[1]

S. Bácsó, X. Cheng and Z. Shen,
Curvature properties of $(\alpha ,\beta )$-metrics,
Finsler Geometry (Sapporo 2005),
Adv. Stud. Pure Math. 48,
Mathematical Society of Japan, Tokyo (2007), 73–110.
Google Scholar

[2]

D. Bao, S.-S. Chern and Z. Shen,
An Introduction to Riemann–Finsler Geometry,
Grad. Texts in Math. 200,
Springer, New York, 2000.
Google Scholar

[3]

D. Bao, C. Robles and Z. Shen,
Zermelo navigation on Riemannian manifolds,
J. Differential Geom. 66 (2004), no. 3, 377–435.
CrossrefGoogle Scholar

[4]

L. Berard-Bergery,
Les variétés riemanniennes homogènes simplement connexes de dimension impaire à courbure strictement positive,
J. Math. Pures Appl. (9) 55 (1976), no. 1, 47–67.
Google Scholar

[5]

S.-S. Chern and Z. Shen,
Riemann–Finsler Geometry,
Nankai Tracts Math. 6,
World Scientific, Hackensack, 2005.
Google Scholar

[6]

S. Deng and Z. Hou,
Invariant Finsler metrics on homogeneous manifolds,
J. Phys. A 37 (2004), no. 34, 8245–8253.
CrossrefGoogle Scholar

[7]

S. Deng and Z. Hu,
Curvatures of homogeneous Randers spaces,
Adv. Math. 240 (2013), 194–226.
CrossrefWeb of ScienceGoogle Scholar

[8]

Z. Hu and S. Deng,
Homogeneous Randers spaces with isotropic S-curvature and positive flag curvature,
Math. Z. 270 (2012), no. 3–4, 989–1009.
CrossrefWeb of ScienceGoogle Scholar

[9]

L. Huang,
On the fundamental equations of homogeneous Finsler spaces,
Differential Geom. Appl. 40 (2015), 187–208.
Web of ScienceCrossrefGoogle Scholar

[10]

L. Huang and X. Mo,
On the flag curvature of a class of Finsler metrics produced by the navigation problem,
Pacific J. Math. 277 (2015), no. 1, 149–168.
Web of ScienceCrossrefGoogle Scholar

[11]

X. Mo and L. Hang,
On curvature decreasing property of a class of navigation problems,
Publ. Math. Debrecen 71 (2007), no. 1–2, 141–163.
Google Scholar

[12]

G. Randers,
On an asymmetrical metric in the fourspace of general relativity,
Phys. Rev. (2) 59 (1941), 195–199.
CrossrefGoogle Scholar

[13]

M. Xu,
Examples of flag-wise positively curved spaces,
Differential Geom. Appl. 52 (2017), 42–50.
Web of ScienceCrossrefGoogle Scholar

[14]

M. Xu and S. Deng,
Homogeneous $(\alpha ,\beta )$-spaces with positive flag curvature and vanishing S-curvature,
Nonlinear Anal. 127 (2015), 45–54.
Web of ScienceGoogle Scholar

[15]

M. Xu and S. Deng,
Normal homogeneous Finsler spaces,
Transform. Groups 22 (2017), no. 4, 1143–1183.
CrossrefWeb of ScienceGoogle Scholar

[16]

M. Xu and S. Deng,
Towards the classification of odd-dimensional homogeneous reversible Finsler spaces with positive flag curvature,
Ann. Mat. Pura Appl. (4) 196 (2017), no. 4, 1459–1488.
CrossrefWeb of ScienceGoogle Scholar

[17]

M. Xu, S. Deng, L. Huang and Z. Hu,
Even-dimensional homogeneous Finsler spaces with positive flag curvature,
Indiana Univ. Math. J. 66 (2017), no. 3, 949–972.
CrossrefGoogle Scholar

[18]

M. Xu and J. A. Wolf,
Killing vector fields of constant length on Riemannian normal homogeneous spaces,
Transform. Groups 21 (2016), no. 3, 871–902.
Web of ScienceCrossrefGoogle Scholar

[19]

M. Xu and L. Zhang,
δ-homogeneity in Finsler geometry and the positive curvature problem,
Osaka J. Math. 55 (2018), no. 1, 177–194.
Google Scholar

[20]

M. Xu and W. Ziller,
Reversible homogeneous Finsler metrics with positive flag curvature,
Forum Math. 29 (2017), no. 5, 1213–1226.
Web of ScienceGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.