[1]

K. Ardakov and K. A. Brown,
Ring-theoretic properties of Iwasawa algebras: A survey,
Doc. Math. Extra Vol. (2006), 7–33.
Google Scholar

[2]

K. Ardakov, F. Wei and J. J. Zhang,
Non-existence of reflexive ideals in Iwasawa algebras of Chevalley type,
J. Algebra 320 (2008), 259–275.
Web of ScienceCrossrefGoogle Scholar

[3]

L. Clozel,
Presentation of an Iwasawa algebra: The case of ${\mathrm{\Gamma}}_{1}SL(2,{\mathbb{Z}}_{p})$,
Doc. Math. 16 (2011), 545–559.
Google Scholar

[4]

L. Clozel,
Globally analytic *p*-adic representations of the pro-*p*-Iwahori subgroup of $GL(2)$ and base change. I: Iwasawa algebras and a base
change map,
Bull. Iranian Math. Soc. 43 (2017), no. 4, 55–76.
Google Scholar

[5]

L. Clozel,
Globally analytic *p*-adic representations of the pro-*p*-Iwahori subgroup of $\mathrm{GL}(2)$ and base change. II: A Steinberg tensor product theorem,
Cohomology of Arithmetic Groups,
Springer Proc. Math. Stat. 245,
Springer, Cham (2018), 1–33.
Google Scholar

[6]

C. Cornut and J. Ray,
Generators of the pro-*p* Iwahori and Galois representations,
Int. J. Number Theory 14 (2018), no. 1, 37–53.
CrossrefWeb of ScienceGoogle Scholar

[7]

J. Dixmier,
Enveloping Algebras,
Grad. Stud. Math. 11,
American Mathematical Society, Providence, 1996.
Google Scholar

[8]

J. D. Dixon, M. P. F. du Sautoy, A. Mann and D. Segal,
Analytic Pro-*p* Groups, 2nd ed.,
Cambridge Stud. Adv. Math. 61,
Cambridge University Press, Cambridge, 1999.
Google Scholar

[9]

M. du Sautoy, D. Segal and A. Shalev,
Subgroup growth in pro-*p* groups,
New Horizons in Pro-*p* Groups,
Progr. Math. 184,
Birkhäuser, Boston (2000), 233–247.
Google Scholar

[10]

M. Harris,
The annihilators of *p*-adic induced modules,
J. Algebra 67 (1980), no. 1, 68–71.
CrossrefGoogle Scholar

[11]

M. Lazard,
Groupes analytiques *p*-adiques,
Inst. Hautes Études Sci. Publ. Math. (1965), no. 26, 389–603.
Google Scholar

[12]

A. Neumann,
Completed group algebras without zero divisors,
Arch. Math. (Basel) 51 (1988), no. 6, 496–499.
CrossrefGoogle Scholar

[13]

J. Ray,
Presentation of the Iwasawa algebra of the pro-*p* Iwahori subgroup of ${\mathrm{GL}}_{n}({\mathbb{Z}}_{p})$,
preprint (2017), https://arxiv.org/abs/1707.06816v1.

[14]

J. Ray,
Presentation of the Iwasawa algebra of the first congruence kernel of a semi-simple, simply connected Chevalley group over ${\mathbb{Z}}_{p}$,
J. Algebra 511 (2018), 405–419.
Google Scholar

[15]

J. E. Roseblade,
Prime ideals in group rings of polycyclic groups,
Proc. Lond. Math. Soc. (3) 36 (1978), no. 3, 385–447.
Google Scholar

[16]

P. Schneider,
*p*-adic Lie Groups,
Grundlehren Math. Wiss. 344,
Springer, Heidelberg, 2011.
Web of ScienceGoogle Scholar

[17]

J.-P. Serre,
Complex Semisimple Lie Algebras,
Springer, New York, 1987.
Google Scholar

[18]

R. Steinberg,
Lectures on Chevalley Groups,
Yale University, New Haven, 1968.
Google Scholar

[19]

F. Wei and D. Bian,
Normal elements of completed group algebras over ${\mathrm{SL}}_{n}({\mathbb{Z}}_{p})$,
Internat. J. Algebra Comput. 20 (2010), no. 8, 1021–1039.
Google Scholar

[20]

F. Wei and D. Bian,
Erratum: Normal elements of completed group algebras over ${\mathrm{SL}}_{n}({\mathbb{Z}}_{p})$ [mr2747414],
Internat. J. Algebra Comput. 23 (2013), no. 1, 215.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.