[1]

H. Amann,
Linear and Quasi-linear Equations,
Birkhäuser, Basel, 1995.
Google Scholar

[2]

J. Bergh and J. Löfström,
Interpolation Spaces. An Introduction,
Grundlehren Math. Wiss. 223,
Springer, Berlin, 1976.
Google Scholar

[3]

J. Bourgain,
Vector-valued singular integrals and the ${H}^{1}$-BMO duality,
Probability Theory and Harmonic Analysis (Cleveland 1983),
Monogr. Textb. Pure Appl. Math. 98,
Dekker, New York (1986), 1–19.
Google Scholar

[4]

J. Bourgain,
Global Solutions of Nonlinear Schrödinger Equations,
Amer. Math. Soc. Colloq. Publ. 46,
American Mathematical Society, Providence, 1999.
Google Scholar

[5]

D. L. Burkholder,
A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions,
Conference on Harmonic Analysis in Honor of Antoni Zygmund. Vol. I, II (Chicago 1981),
Wadsworth Math. Ser.,
Wadsworth, Belmont (1983), 270–286.
Google Scholar

[6]

T. Cazenave and F. B. Weissler,
The Cauchy problem for the critical nonlinear Schrödinger equation in ${H}^{s}$,
Nonlinear Anal. 14 (1990), no. 10, 807–836.
Google Scholar

[7]

F. M. Christ and M. I. Weinstein,
Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation,
J. Funct. Anal. 100 (1991), no. 1, 87–109.
CrossrefGoogle Scholar

[8]

R. Denk, M. Hieber and J. Prüss,
$\mathcal{\mathcal{R}}$-boundedness, Fourier multipliers and problems of elliptic and parabolic type,
Mem. Amer. Math. Soc. 166 (2003), no. 788, 1–114.
Google Scholar

[9]

L. Escauriaza, C. E. Kenig, G. Ponce and L. Vega,
Hardy’s uncertainty principle, convexity and Schrödinger evolutions,
J. Eur. Math. Soc. (JEMS) 10 (2008), no. 4, 883–907.
Google Scholar

[10]

A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli,
Degenerate second order differential operators generating analytic semigroups in ${L}^{p}$ and ${W}^{1,p}$,
Math. Nachr. 238 (2002), 78–102.
Google Scholar

[11]

J. Ginibre and G. Velo,
Smoothing properties and retarded estimates for some dispersive evolution equations,
Comm. Math. Phys. 144 (1992), no. 1, 163–188.
CrossrefGoogle Scholar

[12]

M. Girardi and L. Weis,
Operator-valued Fourier multiplier theorems on ${L}_{p}(X)$ and geometry of Banach spaces,
J. Funct. Anal. 204 (2003), no. 2, 320–354.
Google Scholar

[13]

J. A. Goldstein,
Semigroups of Linear Operators and Applications,
Oxford Math. Monogr.,
Oxford University Press, New York, 1985.
Google Scholar

[14]

M. Keel and T. Tao,
Endpoint Strichartz estimates,
Amer. J. Math. 120 (1998), no. 5, 955–980.
CrossrefGoogle Scholar

[15]

V. Keyantuo and M. Warma,
The wave equation with Wentzell–Robin boundary conditions on ${L}^{p}$-spaces,
J. Differential Equations 229 (2006), no. 2, 680–697.
Google Scholar

[16]

R. Killip and M. Vişan,
Nonlinear Schrödinger equations at critical regularity,
Evolution Equations,
Clay Math. Proc. 17,
American Mathematical Society, Providence (2013), 325–437.
Google Scholar

[17]

A. Lunardi,
Analytic Semigroups and Optimal Regularity in Parabolic Problems,
Mod. Birkhäuser Class.,
Birkhäuser, Basel, 1995.
Google Scholar

[18]

M. Meyries and M. Veraar,
Pointwise multiplication on vector-valued function spaces with power weights,
J. Fourier Anal. Appl. 21 (2015), no. 1, 95–136.
CrossrefWeb of ScienceGoogle Scholar

[19]

A. Pazy,
Semigroups of Linear Operators and Applications to Partial Differential Equations,
Appl. Math. Sci. 44,
Springer, New York, 1983.
Google Scholar

[20]

R. Shahmurov,
Solution of the Dirichlet and Neumann problems for a modified Helmholtz equation in Besov spaces on an annulus,
J. Differential Equations 249 (2010), no. 3, 526–550.
CrossrefWeb of ScienceGoogle Scholar

[21]

R. Shahmurov,
On strong solutions of a Robin problem modelling heat conduction in materials with corroded boundary,
Nonlinear Anal. Real World Appl. 13 (2012), no. 1, 441–451.
Web of ScienceCrossrefGoogle Scholar

[22]

V. B. Shakhmurov,
Nonlinear abstract boundary-value problems in vector-valued function spaces and applications,
Nonlinear Anal. 67 (2007), no. 3, 745–762.
CrossrefWeb of ScienceGoogle Scholar

[23]

V. B. Shakhmurov,
Embeddings and separable differential operators in spaces of Sobolev–Lions type,
Mat. Zametki 84 (2008), no. 6, 907–926.
Google Scholar

[24]

C. D. Sogge,
Fourier Integrals in Classical Analysis,
Cambridge Tracts in Math. 105,
Cambridge University Press, Cambridge, 1993.
Google Scholar

[25]

E. M. Stein,
Singular Integrals and Differentiability Properties of Functions,
Princeton Math. Ser. 30,
Princeton University Press, Princeton, 1970.
Google Scholar

[26]

R. S. Strichartz,
Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations,
Duke Math. J. 44 (1977), no. 3, 705–714.
CrossrefGoogle Scholar

[27]

T. Tao,
Nonlinear Dispersive Equations,
CBMS Reg. Conf. Ser. Math. 106,
American Mathematical Society, Providence, 2006.
Google Scholar

[28]

H. Triebel,
Interpolation Theory, Function Spaces, Differential Operators,
North-Holland Math. Libr. 18,
North-Holland, Amsterdam, 1978.
Google Scholar

[29]

S. Yakubov and Y. Yakubov,
Differential-Operator Equations. Ordinary and Partial Differential Equations,
Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math. 103,
Chapman & Hall/CRC, Boca Raton, 2000.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.