[1]

J. S. Birman,
Braids, Links, and Mapping Class Groups,
Ann. of Math. Stud. 82,
Princeton University Press, Princeton, 1974.
Google Scholar

[2]

L. Breen,
On the functorial homology of abelian groups,
J. Pure Appl. Algebra 142 (1999), no. 3, 199–237.
CrossrefGoogle Scholar

[3]

P. M. Cohn,
Generalization of a theorem of Magnus,
Proc. Lond. Math. Soc. (3) 2 (1952), 297–310.
Google Scholar

[4]

A. Dold and D. Puppe,
Homologie nicht-additiver Funktoren. Anwendungen,
Ann. Inst. Fourier Grenoble 11 (1961), 201–312.
CrossrefGoogle Scholar

[5]

I. Emmanouil and R. Mikhailov,
A limit approach to group homology,
J. Algebra 319 (2008), no. 4, 1450–1461.
CrossrefWeb of ScienceGoogle Scholar

[6]

R. H. Fox,
Free differential calculus. I. Derivation in the free group ring,
Ann. of Math. (2) 57 (1953), 547–560.
CrossrefGoogle Scholar

[7]

K. W. Gruenberg,
Cohomological Topics in Group Theory,
Lecture Notes in Math. 143,
Springer, Berlin, 1970.
Google Scholar

[8]

N. Gupta,
Free Group Rings,
Contemp. Math. 66,
American Mathematical Society, Providence, 1987.
Google Scholar

[9]

M. Hartl, R. Mikhailov and I. B. S. Passi,
Dimension quotients,
J. Indian Math. Soc. (N.S.) Centenary Vol. (2007), 63–107.
Google Scholar

[10]

S. O. Ivanov and R. Mikhailov,
A higher limit approach to homology theories,
J. Pure Appl. Algebra 219 (2015), no. 6, 1915–1939.
CrossrefWeb of ScienceGoogle Scholar

[11]

F. Jean,
Foncteurs derives de lalgebre symetrique: Application au calcul de certains groupes dhomologie fonctorielle des espaces K(B, n),
Doctoral thesis, University of Paris 13, 2002, http://homepages.abdn.ac.uk/mth192/pages/html/archive/jean.html.

[12]

R. Karan, D. Kumar and L. R. Vermani,
Some intersection theorems and subgroups determined by certain ideals in integral group rings. II,
Algebra Colloq. 9 (2002), no. 2, 135–142.
Google Scholar

[13]

B. Köck,
Computing the homology of Koszul complexes,
Trans. Amer. Math. Soc. 353 (2001), no. 8, 3115–3147.
CrossrefGoogle Scholar

[14]

G. Losey,
On dimension subgroups,
Trans. Amer. Math. Soc. 97 (1960), 474–486.
CrossrefGoogle Scholar

[15]

S. Mac Lane,
Categories for the Working Mathematician, 2nd ed.,
Grad. Texts in Math. 5,
Springer, New York, 1998.
Google Scholar

[16]

W. Magnus,
Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring,
Math. Ann. 111 (1935), no. 1, 259–280.
CrossrefGoogle Scholar

[17]

W. Magnus,
Über Beziehungen zwischen höheren Kommutatoren,
J. Reine Angew. Math. 177 (1937), 105–115.
Google Scholar

[18]

R. Mikhailov and I. B. S. Passi,
Lower Central and Dimension Series of Groups,
Lecture Notes in Math. 1952,
Springer, Berlin, 2009.
Google Scholar

[19]

R. Mikhailov and I. B. S. Passi,
Free group rings and derived functors,
Proceedings of the 7th European Congress of Mathematics,
EMS Publishing House, Zurich (2018), 407–425.
Google Scholar

[20]

R. Mikhailov and I. B. S. Passi,
Generalized dimension subgroups and derived functors,
J. Pure Appl. Algebra 220 (2016), no. 6, 2143–2163.
CrossrefWeb of ScienceGoogle Scholar

[21]

I. B. S. Passi,
Dimension subgroups,
J. Algebra 9 (1968), 152–182.
Web of ScienceCrossrefGoogle Scholar

[22]

I. B. S. Passi,
Group Rings and Their Augmentation Ideals,
Lecture Notes in Math. 715,
Springer, Berlin, 1979.
Google Scholar

[23]

D. Quillen,
Cyclic cohomology and algebra extensions,
*K*-Theory 3 (1989), no. 3, 205–246.
CrossrefGoogle Scholar

[24]

E. Rips,
On the fourth integer dimension subgroup,
Israel J. Math. 12 (1972), 342–346.
CrossrefGoogle Scholar

[25]

K. I. Tahara,
On the structure of ${Q}_{3}(G)$ and the fourth dimension subgroups,
Japan. J. Math. (N.S.) 3 (1977), no. 2, 381–394.
Google Scholar

[26]

K.-I. Tahara,
The fourth dimension subgroups and polynomial maps,
J. Algebra 45 (1977), no. 1, 102–131.
CrossrefGoogle Scholar

[27]

E. Witt,
Treue Darstellung Liescher Ringe,
J. Reine Angew. Math. 177 (1937), 152–160.
Google Scholar

[28]

I. A. Yunus,
A problem of Fox,
Soviet Math. Dokl. 30 (1984), 346–350.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.