[1]

M. A. Alvarez, M. C. Rodríguez-Vallarte and G. Salgado,
Contact nilpotent Lie algebras,
Proc. Amer. Math. Soc. 145 (2017), no. 4, 1467–1474.
Web of ScienceGoogle Scholar

[2]

A. Andrada, M. L. Barberis, I. G. Dotti and G. P. Ovando,
Product structures on four dimensional solvable Lie algebras,
Homology Homotopy Appl. 7 (2005), no. 1, 9–37.
CrossrefGoogle Scholar

[3]

A. Andrada, A. Fino and L. Vezzoni,
A class of Sasakian 5-manifolds,
Transform. Groups 14 (2009), no. 3, 493–512.
Web of ScienceCrossrefGoogle Scholar

[4]

A. Andrada and M. Origlia,
Vaisman solvmanifolds and relations with other geometric structures,
preprint (2017), https://arxiv.org/abs/1709.01567.

[5]

A. Andrada and M. Origlia,
Lattices in almost abelian Lie groups with locally conformal Kähler or symplectic structures,
Manuscripta Math. 155 (2018), no. 3–4, 389–417.
CrossrefGoogle Scholar

[6]

D. Angella, G. Bazzoni and M. Parton,
Structure of locally conformally symplectic Lie algebras and solvmanifolds,
preprint (2017), https://arxiv.org/abs/1704.01197;
to appear in Ann. Sc. Norm. Super. Pisa Cl. Sci. (5).

[7]

V. Apostolov and G. Dloussky,
Locally conformally symplectic structures on compact non-Kähler complex surfaces,
Int. Math. Res. Not. IMRN 2016 (2016), no. 9, 2717–2747.
CrossrefGoogle Scholar

[8]

L. Arnold,
Random Dynamical Systems,
SpringerMonogr. Math.,
Springer, Berlin, 1998.
Google Scholar

[9]

L. Auslander, L. Green and F. Hahn,
Flows on Homogeneous Spaces,
Ann. of Math. Stud. 53,
Princeton University Press, Princeton, 1963.
Google Scholar

[10]

A. Banyaga,
On the geometry of locally conformal symplectic manifolds,
Infinite Dimensional Lie groups in Geometry and Representation Theory (Washington, DC 2000),
World Scientific, River Edge (2002), 79–91.
Google Scholar

[11]

M. L. Barberis, I. Dotti and A. Fino,
Hyper-Kähler quotients of solvable Lie groups,
J. Geom. Phys. 56 (2006), no. 4, 691–711.
CrossrefGoogle Scholar

[12]

G. Bazzoni,
Locally conformally symplectic and Kähler geometry,
preprint (2017), https://arxiv.org/abs/1711.02440.

[13]

G. Bazzoni and J. C. Marrero,
On locally conformal symplectic manifolds of the first kind,
Bull. Sci. Math. 143 (2018), 1–57.
CrossrefWeb of ScienceGoogle Scholar

[14]

M. de León, B. López, J. C. Marrero and E. Padrón,
On the computation of the Lichnerowicz–Jacobi cohomology,
J. Geom. Phys. 44 (2003), no. 4, 507–522.
CrossrefGoogle Scholar

[15]

A. Diatta,
Left invariant contact structures on Lie groups,
Differential Geom. Appl. 26 (2008), no. 5, 544–552.
CrossrefWeb of ScienceGoogle Scholar

[16]

J. Dixmier,
Cohomologie des algèbres de Lie nilpotentes,
Acta Sci. Math. Szeged 16 (1955), 246–250.
Google Scholar

[17]

Y. Eliashberg and E. Murphy,
Making cobordisms symplectic,
preprint (2015), https://arxiv.org/abs/1504.06312.

[18]

P. Gauduchon, A. Moroianu and L. Ornea,
Compact homogeneous lcK manifolds are Vaisman,
Math. Ann. 361 (2015), no. 3–4, 1043–1048.
CrossrefWeb of ScienceGoogle Scholar

[19]

F. Guedira and A. Lichnerowicz,
Géométrie des algèbres de Lie locales de Kirillov,
J. Math. Pures Appl. (9) 63 (1984), no. 4, 407–484.
Google Scholar

[20]

S. Haller,
Some properties of locally conformal symplectic manifolds,
Infinite Dimensional Lie Groups in Geometry and Representation Theory (Washington, DC 2000),
World Scientific, River Edge (2002), 92–104.
Google Scholar

[21]

S. Haller and T. Rybicki,
On the group of diffeomorphisms preserving a locally conformal symplectic structure,
Ann. Global Anal. Geom. 17 (1999), no. 5, 475–502.
CrossrefGoogle Scholar

[22]

S. Haller and T. Rybicki,
Reduction for locally conformal symplectic manifolds,
J. Geom. Phys. 37 (2001), no. 3, 262–271.
CrossrefGoogle Scholar

[23]

H. Kasuya,
Vaisman metrics on solvmanifolds and Oeljeklaus–Toma manifolds,
Bull. Lond. Math. Soc. 45 (2013), no. 1, 15–26.
CrossrefGoogle Scholar

[24]

B. S. Kruglikov,
Symplectic and contact Lie algebras with application to the Monge–Ampère equation,
Tr. Mat. Inst. Steklova 221 (1998), 232–246.
Google Scholar

[25]

H. V. Lê and J. Vanžura,
Cohomology theories on locally conformal symplectic manifolds,
Asian J. Math. 19 (2015), no. 1, 45–82.
CrossrefGoogle Scholar

[26]

H.-C. Lee,
A kind of even-dimensional differential geometry and its application to exterior calculus,
Amer. J. Math. 65 (1943), 433–438.
CrossrefGoogle Scholar

[27]

D. V. Millionshchikov,
Cohomology of solvable Lie algebras, and solvmanifolds,
Mat. Zametki 77 (2005), no. 1, 67–79.
Google Scholar

[28]

J. Milnor,
Curvatures of left invariant metrics on Lie groups,
Adv. Math. 21 (1976), no. 3, 293–329.
CrossrefGoogle Scholar

[29]

A. L. Onishchik and E. B. Vinberg,
Lie Groups and Algebraic Groups. III,
Springer, Berlin, 1994.
Google Scholar

[30]

G. Ovando,
Complex, symplectic and Kähler structures on four dimensional Lie groups,
Rev. Un. Mat. Argentina 45 (2004), no. 2, 55–68.
Google Scholar

[31]

H. Sawai,
Vaisman structures on compact solvmanifolds,
Geom. Dedicata 178 (2015), 389–404.
CrossrefGoogle Scholar

[32]

I. Vaisman,
Locally conformal Kähler manifolds with parallel Lee form,
Rend. Mat. (6) 12 (1979), no. 2, 263–284.
Google Scholar

[33]

I. Vaisman,
Generalized Hopf manifolds,
Geom. Dedicata 13 (1982), no. 3, 231–255.
Google Scholar

[34]

I. Vaisman,
Locally conformal symplectic manifolds,
Internat. J. Math. Math. Sci. 8 (1985), no. 3, 521–536.
CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.