[1]

S.-I. Amari,
Differential-geometrical Methods in Statistics,
Lect. Notes Stat. 28,
Springer, New York, 1985.
Google Scholar

[2]

O. G. do Rocio and L. A. B. San Martin,
Connected components of open semigroups in semi-simple Lie groups,
Semigroup Forum 69 (2004), 1–29.
CrossrefGoogle Scholar

[3]

J. J. Duistermaat and J. A. C. Kolk,
Lie Groups,
Universitext,
Springer, Berlin, 2000.
Google Scholar

[4]

Y. Guivarch, L. Ji and J. C. Taylor,
Compactifications of Symmetric Spaces,
Progr. Math. 156,
Birkhäuser, Boston, 1998.
Google Scholar

[5]

S. Helgason,
Differential Geometry, Lie Groups, and Symmetric Spaces,
Pure Appl. Math. 80,
Academic Press, New York, 1978.
Google Scholar

[6]

S. Helgason,
Groups and Geometric Analysis. Integral Geometry, Invariant Differential Operators, and Spherical Functions,
Pure Appl. Math. 113,
Academic Press, Orlando, 1984.
Google Scholar

[7]

J. Hilgert and K.-H. Neeb,
Lie Semigroups and Their Applications,
Lecture Notes in Math. 1552,
Springer, Berlin, 1993.
Google Scholar

[8]

J. Hilgert and K.-H. Neeb,
Maximality of compression semigroups,
Semigroup Forum 50 (1995), no. 2, 205–222.
CrossrefGoogle Scholar

[9]

J. Hilgert and G. Ólafsson,
Causal Symmetric Spaces. Geometry and Harmonic Analysis,
Perspect. Math. 18,
Academic Press, San Diego, 1997.
Google Scholar

[10]

A. W. Knapp,
Lie Groups Beyond an Introduction,
Progr. Math. 140,
Birkhäuser, Boston, 1996.
Google Scholar

[11]

S. Kobayashi and K. Nomizu,
Foundations of Differential Geometry. I,
Interscience, New York, 1969.
Google Scholar

[12]

M. Koecher,
Positivitätsbereiche im ${R}^{n}$,
Amer. J. Math. 79 (1957), 575–596.
Google Scholar

[13]

G. Letac,
Exponential family of probability distributions,
Encyclopedia of Mathematics. Supplement II,
Kluwer Academic, Dordrecht (2000), 209–211.
Google Scholar

[14]

G. Letac,
Natural exponential families of probability distributions,
Encyclopedia of Mathematics. Supplement II,
Kluwer Academic, Dordrecht (2000), 353–355.
Google Scholar

[15]

L. A. B. San Martin,
Invariant control sets on flag manifolds,
Math. Control Signals Systems 6 (1993), no. 1, 41–61.
CrossrefGoogle Scholar

[16]

L. A. B. San Martin,
Order and domains of attraction of control sets in flag manifolds,
J. Lie Theory 8 (1998), no. 2, 335–350.
Google Scholar

[17]

L. A. B. San Martin,
Maximal semigroups in semi-simple Lie groups,
Trans. Amer. Math. Soc. 353 (2001), no. 12, 5165–5184.
CrossrefGoogle Scholar

[18]

L. A. B. San Martin and P. A. Tonelli,
Semigroup actions on homogeneous spaces,
Semigroup Forum 50 (1995), 59–88.
CrossrefWeb of ScienceGoogle Scholar

[19]

L. J. Santos and L. A. B. San Martin,
Semigroups in symmetric Lie groups,
Indag. Math. (N. S.) 18 (2007), no. 1, 135–146.
CrossrefGoogle Scholar

[20]

V. S. Varadarajan,
Harmonic Analysis on Real Reductive Groups,
Lecture Notes in Math. 576,
Springer, Berlin, 1977.
Google Scholar

[21]

V. S. Varadarajan,
Lie Groups, Lie Algebras, and Their Representations,
Grad. Texts in Math. 102,
Springer, New York, 1984.
Google Scholar

[22]

E. B. Vinberg,
The theory of homogeneous convex cones,
Trudy Moskov. Mat. Obšč. 12 (1963), 303–358.
Google Scholar

[23]

G. Warner,
Harmonic Analysis on Semi-simple Lie Groups. I,
Grundlehren Math. Wiss. 188,
Springer, New York, 1972.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.