Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Journal of RF-Engineering and Telecommunications

Editor-in-Chief: Jakoby, Rolf

12 Issues per year

IMPACT FACTOR 2016: 0.462

CiteScore 2016: 0.43

SCImago Journal Rank (SJR) 2016: 0.183
Source Normalized Impact per Paper (SNIP) 2016: 0.333

See all formats and pricing
More options …
Volume 71, Issue 5-6


Radiation Bandwidth Improvement of Electromagnetic Band Gap Cavity Antenna

Abdelhalim Chaabane
  • Corresponding author
  • Department of Electronic and Telecommunications, LT Laboratory, Guelma University, Guelma 24000, Algeria
  • Department of Electronics, LIS Laboratory, Faculty of Technology, University of Setif-1, Sétif 19000, Algeria
  • CEMT-INRS, 800 De La Gauchetière Ouest, Bureau 6900, Quebec H5A 1K6, Canada
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Farid Djahli / Hussein Attia / Tayeb. A. Denidni
Published Online: 2017-02-11 | DOI: https://doi.org/10.1515/freq-2016-0205


In this paper, an electromagnetic band gap cavity antenna with improved radiation and impedance bandwidths is presented. The proposed antenna is constructed by placing a triple-layer heterogeneous printed-unprinted partially reflective surface (PRS) above a primary aperture-coupled patch antenna. The PRS unit-cell provides a positive gradient reflection phase behavior over the desired frequency range. A prototype antenna is fabricated and measured that highlighted its ability to achieve 3-dB gain bandwidth of about 35.9 %, from 7.93 GHz to 11.4 GHz, with a peak gain of 14.25 dBi at 8.5 GHz. In addition, the impedance bandwidth is 40.32 %, from 7.9 GHz to 11.89 GHz. Thus, the designed antenna outperforms many other competitors for improving the radiation bandwidth of planar antennas with the same presented concept.

Keywords: electromagnetic band gap cavity antenna; partially reflective surface; wideband; wide radiation bandwidth; high gain


  • [1]

    B. P. Chacko, G. Augustin, and T. A. Denidni, “FPC antennas, C-band point-to-point communication systems,” IEEE Antennas Propag. Mag., vol. 58, no. 1, pp. 56–64, Feb. 2016.CrossrefWeb of ScienceGoogle Scholar

  • [2]

    L. Chang, Y. Li, Z. Zhang, and Z. Feng, “Compact all-metallic cavity-cascaded antenna,” Electro. Lett., vol. 52, no. 6, pp. 413–414, 2016.CrossrefGoogle Scholar

  • [3]

    M. U. Afzal, K. P. Esselle, and B. A. Zeb, “Dielectric phase-correcting structures for electromagnetic band gap resonator antennas,” IEEE Trans. Antennas Propag., vol. 63, no. 8, pp. 3390–3399, 2015.CrossrefWeb of ScienceGoogle Scholar

  • [4]

    B. A. Zeb, and K. P. Esselle, “High-gain dual band dual-polarised electromagnetic band gap resonator antenna with all-dielectric superstrcture,” IET Microwave Antennas Paropag., vol. 9, no. 10, pp. 1059–1065, 2015.CrossrefGoogle Scholar

  • [5]

    B. A. Zeb, and K. P. Esselle, “Design and measurement of a tri-band one dimensional electromagnetic bandgap resonator antenna,” IET Microwave Antennas Propag., vol. 10, no. 2, pp. 168–172, 2016.CrossrefGoogle Scholar

  • [6]

    M. A. Al-Tarifi, D. E. Anagnostou, A. K. Amert, and K. W. Whites, “Bandwidth enhancement of the resonant cavity antenna by using two dielectric superstrates,” IEEE Trans. Antennas Propag., vol. 61, no. 4, pp. 1898–1908, 2013.CrossrefWeb of ScienceGoogle Scholar

  • [7]

    A. A. Baba, R. M. Hashmi, and K. P. Esselle, “Wideband gain enhancement of slot antenna using superstructure with optimised axial permittivity variation,” Electro. Lett., vol. 52, no. 4, pp. 266–268, 2016.CrossrefGoogle Scholar

  • [8]

    R. M. Hashmi, and K. P. Esselle, “A class of extremely wideband resonant cavity antennas with large directivity-bandwidth products,” IEEE Trans. Antennas Propag., vol. 64, no. 2, pp. 830–835, 2016.CrossrefWeb of ScienceGoogle Scholar

  • [9]

    B. A. Zeb, R. M. Hashmi, and K. P. Esselle, “Wideband gain enhancement of slot antenna using one unprinted dielectric superstrate,” Electro. Lett., vol. 51, no. 15, pp. 1146–1148, 2015.CrossrefGoogle Scholar

  • [10]

    K. Konstantinidis, A. P. Fresidis, and P. S. Hall, “Broadband sub-wavelength profile high gain antennas based on multi-layer metasurfaces,” IEEE Trans. Antennas Propag., vol. 63, no. 1, pp. 423–427, 2015.CrossrefWeb of ScienceGoogle Scholar

  • [11]

    K. Konstantinidis, A. P. Fresidis, and P. S. Hall, “Multilayer partially reflective surfaces for broadband Fabry-Perot cavity antennas,” IEEE Trans. Antennas Propag., vol. 62, no. 7, pp. 3474–3481, 2014.Web of ScienceCrossrefGoogle Scholar

  • [12]

    H. Y. Yuan, S. B. Qu, J. Q. Zhang, J. F. Wang, H. Y. Chen, H. Zhou, Z. Xu, and A. X. Zhang, “A metamaterial-inspired wideband high-gain Fabry–Perot resonator microstrip patch antenna,” Microw. Opt. Technol. Lett., vol. 58, no. 7, pp. 1675–1678, 2016.Web of ScienceCrossrefGoogle Scholar

  • [13]

    X. X. Yang, G. N. Tan, B. Han, and H. G. Xue, “Millimeter wave Fabry-Perot resonator antenna,” Int. J. Antennas Propag., vol. 2016, article ID 3032684, pp. 1–7, 2016.Google Scholar

  • [14]

    W. Q. Li, X. Y. Cao, J. Gao, Z. Zhang, and L. L. Cong, “Broadband RCS reduction and gain enhancement microstrip antenna using shared aperture artificial composite material based on quasi-fractal tree,” IET Microwave Antennas Propag., vol. 10, no. 4, pp. 370–377, 2016.CrossrefGoogle Scholar

  • [15]

    Z. G. Liu, Z. X. Cao, and L. N. Wu, “Compact low-profile circularly polarized Fabry–Perot resonator antenna fed by linearly polarized microstrip patch,” IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 524–527, 2016.CrossrefWeb of ScienceGoogle Scholar

  • [16]

    G. V. Trentini, “Partially reflecting sheet arrays,” IRE Trans. Antenna Propag., vol. AP-4, no. 4, pp. 666–671, 1956.Google Scholar

  • [17]

    N. Wang, Q. Liu, C. Wu, L. Talbi, Q. Zeng, and J. Xu, “Wideband Fabry-Perot resonator antenna with two complementary FSS layers,” IEEE Trans. Antennas Propag., vol. 62, no. 5, pp. 2463–2471, 2014.CrossrefWeb of ScienceGoogle Scholar

  • [18]

    N. Wang, J. Li, G. Wei, and L. Talbi, “Wideband Fabry- Perot resonator antenna with two layers of dielectric superstrates,” IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 229–232, 2015.CrossrefWeb of ScienceGoogle Scholar

  • [19]

    F. Qin, S. Gao, G. Wei, and J. Xu, “Broadband circularly polarized Fabry-Perot antenna integrated with wideband phase shifter for satellite communication,” Microw. Opt. Technol. Lett., vol. 58, no. 5, pp. 1109–1113, 2016.CrossrefWeb of ScienceGoogle Scholar

  • [20]

    Z. L. Wang, K. Hashimoto, N. Shinohara, and H. Matsumoto, “Frequency-selective surface for microwave power transmission,” IEEE Trans. Microwave Theory Tech., vol. 47, no. 10, pp. 2039–2041, 1999.CrossrefGoogle Scholar

  • [21]

    A. Ebrahimi, S. Nirantar, W. Withayachumnankul, M. Bhaskaran, S. Sriram, S. F. Al Sarawi, and D. Abbott, “Second order terahertz band pass frequency selective surface with miniaturized elements,” IEEE Trans. Terahertz Sci. Tech., vol. 5, no. 5, pp. 761–769, 2015.CrossrefGoogle Scholar

  • [22]

    T. Rahim, and J. Xu, “Design of high gain and wide band EBG resonator antenna with dual layers of same dielectric superstrate at X-bands,” J. Microwave Optoelectron. Electromagn. Appl., vol. 15, no. 2, pp. 93–104, 2016.CrossrefGoogle Scholar

  • [23]

    A. A. Eldek, “Gain improvement of a cavity backed slot antenna,” Microwave Opt. Technol. Lett., vol. 53, no. 8, pp. 1815–1818, 2011.Web of ScienceCrossrefGoogle Scholar

  • [24]

    K. Konstantinidis, A. P. Feresidis, and P. S. Hall, “Multiple layer Fabry-Perot cavity antennas,” IEEE, 7th European Conf. Antennas Propagation (EuCap), pp. 2500–2504, 2013.

  • [25]

    A. Chaabane, F. Djahli, H. Attia, and T. A. Denidni, “Antenna radiation bandwidth broadening using wideband double layer partially reflective surfaces,” IEEE, 17th Int. Symp. Antenna Technology Applied Electromagnetics (ANTEM), 2016.

About the article

Received: 2016-07-03

Published Online: 2017-02-11

Published in Print: 2017-05-24

Citation Information: Frequenz, Volume 71, Issue 5-6, Pages 243–249, ISSN (Online) 2191-6349, ISSN (Print) 0016-1136, DOI: https://doi.org/10.1515/freq-2016-0205.

Export Citation

© 2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in