Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Frequenz

Journal of RF-Engineering and Telecommunications

Editor-in-Chief: Jakoby, Rolf

12 Issues per year


IMPACT FACTOR 2017: 0.280
5-year IMPACT FACTOR: 0.297

CiteScore 2017: 0.38

SCImago Journal Rank (SJR) 2017: 0.128
Source Normalized Impact per Paper (SNIP) 2017: 0.243

Online
ISSN
2191-6349
See all formats and pricing
More options …
Volume 72, Issue 3-4

Issues

Towards Biofilm Spectroscopy – A Novel Microfluidic Approach for Characterizing Biofilm Subpopulation by Microwave-Based Electrical Impedance Spectroscopy

Christiane Richter / Stefan Schneider
  • Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bastian E. Rapp
  • Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sönke Schmidt
  • Corresponding author
  • Institute for Microwave Engineering and Photonics, Technische Universität Darmstadt, Darmstadt, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martin Schüßler
  • Institute for Microwave Engineering and Photonics, Technische Universität Darmstadt, Darmstadt, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rolf Jakoby
  • Institute for Microwave Engineering and Photonics, Technische Universität Darmstadt, Darmstadt, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Julia Bruchmann / Moritz Bischer
  • Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thomas Schwartz
  • Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-03-28 | DOI: https://doi.org/10.1515/freq-2018-0005

Abstract

In this work three disciplines – microfluidics, microbiology and microwave engineering – are utilized to develop a system for analyzing subpopulations of biofilms and their reaction to antibiotic treatment. We present handling strategies to destabilize a biofilm inside a microfluidic system down to aggregate sizes of<10 µm2 as well as microfluidic structures for the flow-through filtration of the resulting cell suspensions. For the analysis of the cell populations by microwave electrical impedance spectroscopy, two novel calibration schemes are demonstrated to cover both, reflection as well as transmission measurements of dielectric fluids. The broadband calibration strategies are solely based on liquid standards and allow a precise long-term monitoring with a resolution up to Δε=6 ‰, while the error is kept below Δ=1.5 ‰ at5GHz. Combining these three research topics therefore will open up new ways for analyzing biofilm effects.

Keywords: spectroscopy; permittivity measurements; microfluidics; biofilm

Christiane Richter, Sönke Schmidt, Julia Bruchmann These authors contributed equally.

References

  • [1]

    J. Costerton, L. Montanaro, and C. Arciola. (2005). Biofilm in implant infections: Its production and regulation. Int. J. Artif. Organs. 28(11), 1062–1068.CrossrefGoogle Scholar

  • [2]

    P. S. Stewart and J. W. Costerton. (2001). Antibiotic resistance of bacteria in biofilms. The Lancet. 358(9276), 135–138.CrossrefGoogle Scholar

  • [3]

    E. M. Hetrick and M. H. Schoenfisch. (2006). Reducing implant-related infections: Active release strategies. Chem. Soc. Rev. 35(9), 780–789.CrossrefGoogle Scholar

  • [4]

    J. W. Costerton, P. S. Stewart, and E. P. Greenberg. (1999). Bacterial biofilms: A common cause of persistent infections. Science. 284(5418), 1318–1322.CrossrefGoogle Scholar

  • [5]

    M. Willcox et al., (2008). A novel cationic‐peptide coating for the prevention of microbial colonization on contact lenses. J. Appl. Microbiol. 105(6), 1817–1825.CrossrefWeb of ScienceGoogle Scholar

  • [6]

    P. D. Fey and M. E. Olson. (2010). Current concepts in biofilm formation of Staphylococcus epidermidis. Future Microbiol. 5(6), 917–933.Web of ScienceCrossrefGoogle Scholar

  • [7]

    C. C. De Carvalho. (2007). Biofilms: Recent developments on an old battle. Recent Pat. Biotechnol. 1(1), 49–57.CrossrefGoogle Scholar

  • [8]

    K. Lewis. (2001). Riddle of biofilm resistance. Antimicrob. Agents Chemother. 45(4), 999–1007.CrossrefGoogle Scholar

  • [9]

    D. R. Monteiro et al., (2009). The growing importance of materials that prevent microbial adhesion: Antimicrobial effect of medical devices containing silver. Int. J. Antimicrob. Agents. 34(2), 103–110.CrossrefWeb of ScienceGoogle Scholar

  • [10]

    J. Davies, G. B. Spiegelman, and G. Yim. (2006). The world of subinhibitory antibiotic concentrations. Curr. Opin. Microbiol. 9(5), 445–453.CrossrefGoogle Scholar

  • [11]

    D. Reyes-Romero et al., (2014). Dynamic thermal sensor for biofilm monitoring. Sensors Actuators A: Phy. 213, 43–51.CrossrefGoogle Scholar

  • [12]

    F. Mariana et al., (2013). Chip-calorimetric monitoring of biofilm eradication with antibiotics provides mechanistic information. Int. J. Med. Microbiol. 303(3), 158–165.Web of ScienceCrossrefGoogle Scholar

  • [13]

    R. Maurício et al., (2013). Biofilm thickness measurement using an ultrasound method in a liquid phase. Environ. Monit. Assess. 185(10), 8125–8133.CrossrefWeb of ScienceGoogle Scholar

  • [14]

    N. Saber et al., (2013). A feasibility study on the application of microwaves for online biofilm monitoring in the pipelines. Int. J. Press. Vessels Piping. 111, 99–105.Google Scholar

  • [15]

    R. Ghodssi, M. T. Meyer, and Y. W. Kim. Microsystems for sensing and characterization of bacterial biofilms, in SENSORS, 2013 IEEE. 2013. IEEE.Google Scholar

  • [16]

    T. Sakata and R. Fukuda. (2013). Simultaneous biosensing with quartz crystal microbalance with a dissipation coupled-gate semiconductor device. Anal. Chem. 85(12), 5796–5800.CrossrefWeb of ScienceGoogle Scholar

  • [17]

    T. Sun et al., (2007). Analytical electric field and sensitivity analysis for two microfluidic impedance cytometer designs. Iet Nanobiotechnology. 1(5), 69–79.Web of ScienceCrossrefGoogle Scholar

  • [18]

    E. Ghafar-Zadeh and M. Sawan. (2007). A hybrid microfluidic/CMOS capacitive sensor dedicated to lab-on-chip applications. IEEE Trans. Biomed. Circuits Syst. 1(4), 270–277.Web of ScienceCrossrefGoogle Scholar

  • [19]

    G. Facer, D. Notterman, and L. Sohn. (2001). Dielectric spectroscopy for bioanalysis: From 40 Hz to 26.5 GHz in a microfabricated wave guide. Appl. Phys. Lett. 78(7), 996–998.CrossrefGoogle Scholar

  • [20]

    K. Grenier et al., (2009). Integrated broadband microwave and microfluidic sensor dedicated to bioengineering. IEEE Trans. Microw. Theory Tech. 57(12), 3246–3253.Web of ScienceCrossrefGoogle Scholar

  • [21]

    K. Grenier, et al. Resonant based microwave biosensor for biological cells discrimination, in Radio and Wireless Symposium (RWS), 2010 IEEE. 2010. IEEE.Google Scholar

  • [22]

    K. Grenier, et al. Microwave signatures of alive B-lymphoma cells suspensions, in 2011 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS), 2011. IEEE.Google Scholar

  • [23]

    J. Liu and D. Xue. (2011). Rapid and scalable route to CuS biosensors: A microwave-assisted Cu-complex transformation into CuS nanotubes for ultrasensitive nonenzymatic glucose sensor. J. Mater. Chem. 21(1), 223–228.CrossrefWeb of ScienceGoogle Scholar

  • [24]

    A. Treizebre and B. Bocquet. (2008). Nanometric metal wire as a guide for THz investigation of living cells. Int. J. Nanotechnology. 5(6–8), 784–795.Web of ScienceCrossrefGoogle Scholar

  • [25]

    A. C. Ward, P. Connolly, and N. P. Tucker. (2014). Pseudomonas aeruginosa can be detected in a polymicrobial competition model using impedance spectroscopy with a novel biosensor. PloS One. 9(3), e91732.Web of ScienceGoogle Scholar

  • [26]

    J. Paredes et al., (2013). Interdigitated microelectrode biosensor for bacterial biofilm growth monitoring by impedance spectroscopy technique in 96-well microtiter plates. Sensors Actuators B: Chemical. 178, 663–670.Web of ScienceCrossrefGoogle Scholar

  • [27]

    L. Pires et al., (2013). Online monitoring of biofilm growth and activity using a combined multi-channel impedimetric and amperometric sensor. Biosens. Bioelectron. 47, 157–163.CrossrefWeb of ScienceGoogle Scholar

  • [28]

    J. Bruchmann et al., (2015). Multi-channel microfluidic biosensor platform applied for online monitoring and screening of biofilm formation and activity. PloS One. 10(2), e0117300.Web of ScienceGoogle Scholar

  • [29]

    H. C. Flemming, T. R. Neu, and D. J. Wozniak. (2007). The EPS matrix: The house of biofilm cells. J. Bacteriol. 189(22), 7945–7947.Web of ScienceCrossrefGoogle Scholar

  • [30]

    P. Chaignon et al., (2007). Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition. Appl. Microbiol. Biotechnol. 75(1), 125–132.CrossrefWeb of ScienceGoogle Scholar

  • [31]

    S. K. Shukla and T. S. Rao. (2012). Dispersal of Bap-mediated Staphylococcus aureus biofilm by proteinase K. J. Antibiot. 66, 55–60.Web of ScienceGoogle Scholar

  • [32]

    J. B. Kaplan et al., (2012). Recombinant human DNase I decreases biofilm and increases antimicrobial susceptibility in staphylococci. J. Antibiot. 65(2), 73–77.CrossrefWeb of ScienceGoogle Scholar

  • [33]

    C. B. Whitchurch et al., (2002). Extracellular DNA required for bacterial biofilm formation. Science. 295(5559), 1487.CrossrefGoogle Scholar

  • [34]

    S. Wang et al., (2013). A spider web strategy of type IV pili‐mediated migration to build a fibre‐like Psl polysaccharide matrix in Pseudomonas aeruginosa biofilms. Environ. Microbiol. 15(8), 2238–2253.CrossrefWeb of ScienceGoogle Scholar

  • [35]

    L. Friedman and R. Kolter. (2004). Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol. Microbiol. 51(3), 675–690.Google Scholar

  • [36]

    J. Nett et al., (2007). Putative role of β-1, 3 glucans in Candida albicans biofilm resistance. Antimicrob. Agents Chemother. 51(2), 510–520.Web of ScienceCrossrefGoogle Scholar

  • [37]

    A. Boyd and A. Á. Chakrabarty. (1994). Role of alginate lyase in cell detachment of Pseudomonas aeruginosa. Appl. Environ. Microbiol. 60(7), 2355–2359.Google Scholar

  • [38]

    J. B. Kaplan et al., (2003). Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous beta-hexosaminidase activity. J. Bacteriol. 185(16), 4693–4698.CrossrefGoogle Scholar

  • [39]

    L. R. Huang et al., (2004). Continuous particle separation through deterministic lateral displacement. Science. 304(5673), 987–990.CrossrefGoogle Scholar

  • [40]

    J. A. Davis, Microfluidic Separation of Blood Components through Deterministic Lateral Displacement. Princeton University, 2008.Google Scholar

  • [41]

    F. Artis et al., (2015). Microwaving biological cells: Intracellular analysis with microwave dielectric spectroscopy. IEEE Microw. Mag. 16(4), 87–96.CrossrefGoogle Scholar

  • [42]

    J.-C. Chien, et al. A 6.5/17.5-GHz dual-channel interferometer-based capacitive sensor in 65-nm CMOS for high-speed flow cytometry, in Microwave Symposium (IMS), 2014 IEEE MTT-S International. 2014. IEEE.Google Scholar

  • [43]

    S. Schmidt, M. Schüßler, and R. Jakoby. All liquid based calibration scheme for microwave dielectrometry, in 2017 IEEE MTT-S International Microwave Symposium (IMS). 2017. IEEE.Google Scholar

  • [44]

    F. Michler, et al. Calibration scheme for microwave biosensors using exclusively liquid calibration standards, in 2016 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS), 2016. IEEE.Google Scholar

  • [45]

    K. Nörtemann, J. Hilland, and U. Kaatze. (1997). Dielectric properties of aqueous NaCl solutions at microwave frequencies. J. Phys. Chem. 101(37), 6864–6869.CrossrefGoogle Scholar

  • [46]

    T. M. Nargang et al., (2014). Liquid polystyrene: A room-temperature photocurable soft lithography compatible pour-and-cure-type polystyrene. Lab Chip. 14(15), 2698–2708.CrossrefWeb of ScienceGoogle Scholar

  • [47]

    F. Kotz et al., (2017). Three-dimensional printing of transparent fused silica glass. Nature. 544(7650), 337–339.Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2018-01-03

Published Online: 2018-03-28

Published in Print: 2018-03-26


Funder Name: Deutsche Forschungsgemeinschaft, Funder Id: 10.13039/501100001659, Grant Number: SPP 1857 Essence.


Citation Information: Frequenz, Volume 72, Issue 3-4, Pages 123–134, ISSN (Online) 2191-6349, ISSN (Print) 0016-1136, DOI: https://doi.org/10.1515/freq-2018-0005.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in