Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Frequenz

Journal of RF-Engineering and Telecommunications

Editor-in-Chief: Jakoby, Rolf


IMPACT FACTOR 2017: 0.280
5-year IMPACT FACTOR: 0.297

CiteScore 2017: 0.38

SCImago Journal Rank (SJR) 2017: 0.128
Source Normalized Impact per Paper (SNIP) 2017: 0.243

Online
ISSN
2191-6349
See all formats and pricing
More options …
Volume 72, Issue 3-4

Issues

Towards the Development of THz-Sensors for the Detection of African Trypanosomes

Robert Knieß / Carolin B. Wagner / H. Ulrich Göringer / Mario Mueh / Christian Damm / Simon Sawallich / Bartos Chmielak / Ulrich Plachetka / Max Lemme
Published Online: 2018-03-17 | DOI: https://doi.org/10.1515/freq-2018-0011

Abstract

Human African trypanosomiasis (HAT) is a neglected tropical disease (NTD) for which adequate therapeutic and diagnostic measures are still lacking. Causative agent of HAT is the African trypanosome, a single-cell parasite, which propagates in the blood and cerebrospinal fluid of infected patients. Although different testing methods for the pathogen exist, none is robust, reliable and cost-efficient enough to support large-scale screening and control programs. Here we propose the design of a new sensor-type for the detection of infective-stage trypanosomes. The sensor exploits the highly selective binding capacity of nucleic acid aptamers to the surface of the parasite in combination with passive sensor structures to allow an electromagnetic remote read-out using terahertz (THz)-radiation. The short wavelength provides a superior interaction with the parasite cells than longer wavelengths, which is essential for a high sensitivity. We present two different sensor structures using both, micro- and nano-scale elements, as well as different measurement principles.

Keywords: terahertz sensors; biosensors; trypanosomes

PACS: 87.85.fk

References

  • WHO fact sheet no. 259 (03/2014). [Online]. Available: http://www.who.int/mediacentre/factsheets/fs259/en/.

  • K. Stuart, R. Brun, S. Croft, A. Fairlamb, R. E. Gürtler, J. McKerrow, S. Reed and R. Tarleton, “Kinetoplastids: related protozoan pathogens, different diseases,” J. Clin. Invest., vol. 118, no. 4, pp. 1301–1310, 2008.CrossrefGoogle Scholar

  • S. E. Osborne and A. D. Ellington, “Nucleic acid selection and the challenge of combinatorial chemistry,” Chem. Rev., vol. 97, no. 2, pp. 349–370, 1997.CrossrefGoogle Scholar

  • R. R. Breaker, “In vitro selection of catalytic polynucleotides,” Chem. Rev., vol. 97, no. 2, pp. 371–390, 1997.CrossrefGoogle Scholar

  • M. Famulok, G. Mayer and M. Blind, “Nucleic acid aptamers from selection in vitro to applications in vivo,” Acc. Chem. Res., vol. 33, no. 9, pp. 591–599, 2000.CrossrefGoogle Scholar

  • L. B. McGown, M. J. Joseph, J. B. Pitner, G. P. Vonk and G. P. Vonk, “The nucleic acid ligand,” Anal. Chem., vol. 67, no. 21, pp. 663A–668A, 1995.Google Scholar

  • L. Gold, B. Polisky, O. Uhlenbeck and M. Yarus, “Diversity of oligonucleotide functions,” Annu. Rev. Biochem., vol. 64, no. 1, pp. 763–797, 1995.CrossrefGoogle Scholar

  • A. D. Ellington and R. Conrad, “Aptamers as potential nucleic acid pharmaceuticals,” Biotechnol. Annu. Rev., vol. 1, pp. 185–214, 1995.CrossrefGoogle Scholar

  • E. J. Cho, J.-W Lee. and A. D. Ellington, “Applications of aptamers as sensors,” Annu. Rev. Anal. Chem., vol. 2, pp. 241–264, 2009.CrossrefGoogle Scholar

  • I. Willner and M. Zayats, “Electronic aptamer-based sensors,” Angew. Chem. Int. Ed., vol. 46, no. 34, pp. 6408–6418, 2007.CrossrefGoogle Scholar

  • G. A. Zelada-Guillén, J. Riu, A. Düzgün and F. X. Rius, “Immediate detection of living bacteria at ultralow concentrations using a carbon nanotube based potentiometric aptasensor,” Angew. Chem. Int. Ed., vol. 48, no. 40, pp. 7334–7337, 2009.CrossrefGoogle Scholar

  • P. Hong, W. Li and J. Li, “Applications of aptasensors in clinical diagnostics,” Sensors, vol. 12, no. 2, pp. 1181–1193, 2012.CrossrefGoogle Scholar

  • M. Lorger, M. Engstler, M. Homann and H. U. Göringer, “Targeting the variable surface of African trypanosomes with variant surface glycoprotein-specific, serum-stable RNA aptamers,” Eukaryotic Cell, vol. 2, no. 1, pp. 84–94, 2003.CrossrefGoogle Scholar

  • M. Homann and H. U. Göringer, “Combinatorial selection of high affinity RNA ligands to live African trypanosomes.” Nucleic Acids Res., vol. 27, no. 9, pp. 2006–2014, May 1999.Crossref

  • M. Homann, M. Lorger, M. Engstler, M. Zacharias and H. U. Göringer, “Serum-stable RNA aptamers to an invariant surface domain of live African trypanosomes,” Comb. Chem. High Throughput Screening, vol. 9, no. 7, pp. 491–499, 2006.CrossrefGoogle Scholar

  • H. U. Göringer, “Parasite-specific aptamers as biosynthetic reagents and potential pharmaceuticals,” Trends in Parasitology, vol. 28, no. 3, pp. 106–113, 2012.CrossrefGoogle Scholar

  • M. Mueh, M. Maasch, M. Brecht, H. U. Göringer and C. Damm, “Complex dielectric characterization of African trypanosomes for aptamer-based terahertz sensing applications,” in 2017 First IEEE MTT-S International Microwave Bio Conference (IMBIOC), May 2017, pp. 1–4.Google Scholar

  • D. R. Smith, W. J. Padilla, D. Vier, S. C. Nemat-Nasser and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett., vol. 84, no. 18, p. 4184, 2000.CrossrefGoogle Scholar

  • E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett., vol. 95, no. 4, p. 043113, 2009.CrossrefGoogle Scholar

  • R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz and H. V. Demir, “Metamaterial-based wireless strain sensors,” Appl. Phys. Lett., vol. 95, no. 1, p. 011106, 2009.CrossrefGoogle Scholar

  • R. Yogi, R. Parolia, R. Karekar and R. Aiyer, “Microwave microstrip ring resonator as a paper moisture sensor: Study with different grammage,” Meas. Sci. Technol., vol. 13, no. 10, p. 1558, 2002.CrossrefGoogle Scholar

  • V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett., vol. 99, p. 147401, Oct 2007.CrossrefGoogle Scholar

  • R. Singh, I. Al-Naib, W. Cao, C. Rockstuhl, M. Koch and W. Zhang, “The fano resonance in symmetry broken terahertz metamaterials,” IEEE Trans. Terahertz Sci. Technol., vol. 3, no. 6, pp. 820–826, Nov 2013.CrossrefGoogle Scholar

  • R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul and W. Zhang, “Ultrasensitive terahertz sensing with high-q fano resonances in metasurfaces,” Appl. Phys. Lett., vol. 105, no. 17, p. 171101, 2014.CrossrefGoogle Scholar

  • M. Mueh, M. Maasch, R. Knie, H. U. Göringer and C. Damm, “Detection of African trypanosomes using asymmetric double-split ring based THz sensors,” IEEE J. Electromagnet., RF Microwaves Med. Biol., vol. PP, no. 99, pp. 1–1, 2017.Google Scholar

  • F. Chappuis, L. Loutan, P. Simarro, V. Lejon and P. Büscher, “Options for field diagnosis of human African trypanosomiasis,” Clin. Microbiol. Rev., vol. 18, no. 1, pp. 133–146, 2005.CrossrefGoogle Scholar

  • N. Inagaki, “Polymer films produced by plasma polymerization,” in Materials surface processing by directed energy techniques. Elsevier, 2006, pp. 659–707.

  • M. Maasch, M. Mueh and C. Damm, “Sensor array on structured PET substrates for detection of thin dielectric layers at terahertz frequencies,” in 2017 IEEE MTT-S International Microwave Symposium (IMS), 2017.

  • A. Barranco, A. Borras, A. R. Gonzalez-Elipe and A. Palmero, “Perspectives on oblique angle deposition of thin films: From fundamentals to devices,” Prog. Mater Sci., vol. 76s, pp. 59–153, 2016.Google Scholar

  • K. Sakai et al., Terahertz Optoelectron., vol. 6. Springer Berlin, 2005.Google Scholar

  • M. Wächter, M. Nagel and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett., vol. 95, no. 4, p. 041112, 2009.CrossrefGoogle Scholar

  • H. Tao, W. J. Padilla, X. Zhang and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 1, pp. 92–101, 2011.CrossrefGoogle Scholar

About the article

Received: 2018-01-05

Published Online: 2018-03-17

Published in Print: 2018-03-26


Citation Information: Frequenz, Volume 72, Issue 3-4, Pages 101–111, ISSN (Online) 2191-6349, ISSN (Print) 0016-1136, DOI: https://doi.org/10.1515/freq-2018-0011.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in