Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Frequenz

Journal of RF-Engineering and Telecommunications

Editor-in-Chief: Jakoby, Rolf


IMPACT FACTOR 2017: 0.280
5-year IMPACT FACTOR: 0.297

CiteScore 2017: 0.38

SCImago Journal Rank (SJR) 2017: 0.128
Source Normalized Impact per Paper (SNIP) 2017: 0.243

Print + Online
See all formats and pricing
More options …
Volume 72, Issue 9-10

Issues

Hexagonal Fractal Antenna using Koch for Wireless Applications

Manisha Gupta / Vinita Mathur
Published Online: 2018-01-19 | DOI: https://doi.org/10.1515/freq-2017-0203

Abstract

This paper presents the design, fabrication, and measurement of a novel ultra-wideband (UWB) hexagonal fractal patch antenna. This antenna uses hexagonal shape with Koch snowflake fractal at its edges. The proposed antenna has been excited using microstrip feed. The measured result of this antenna offers the ultra wideband characteristics from 3.265 GHz to 8.2 GHz. The antenna is practically fabricated and tested. Measured results show a good agreement with simulated results. The measured radiation patterns of this antenna are nearly omnidirectional in H-plane and bidirectional in E-plane. This antenna holds applications in many satellite communication transmissions, some Wi-Fi devices, cordless telephones, and weather radar systems. In this paper, an approach for multi-band antennas is proposed. First, a hexagonal patch is taken, it is fractured using Koch structure. The antenna shows compact dimensions with good S11 and pattern performance to be adopted for UWB applications.

Keywords: hexagonal patch; Koch fractal; ultra wideband

References

  • [1]

    T. H. Chang and J. F. Kiang, “Compact multi-band H-shaped slot antenna,” IEEE Trans. Antennas Propag., vol. 61, pp. 4345–4349, 2013.CrossrefWeb of ScienceGoogle Scholar

  • [2]

    A. O. Kaka, M. Toycan, and S. D. Walker, “Modified Hilbert fractal geometry, multi-service, miniaturized patch antenna for UWB wireless communication,” COMPEL Int. J. Comput. Math. Electr. Electron. Eng., vol. 31, pp. 1835–1849, 2012.CrossrefGoogle Scholar

  • [3]

    K. Mandal, S. Sarkar, and P. P. Sarkar, “Bandwidth enhancement of microstrip antennas by staggering effect,” Microw. Opt. Technol. Lett., vol. 53, pp. 2446–2447, 2011.CrossrefWeb of ScienceGoogle Scholar

  • [4]

    S. Kozeil and A. Bekasiewicz, “Simulation-driven design of compact ultra-wideband antenna structures,” Eng. Comput., vol. 33, pp. 1051–1061, 2016.CrossrefGoogle Scholar

  • [5]

    B. Roy, A. Bhattacharya, S. K. Chowdhury, and A. K. Bhattacharjee, “Wideband Snowflake slot antenna using Koch iteration technique for wireless and C-band applications,” AEU Int. J. Electron. Commun., vol. 70, pp. 1467–1472, 2016.Web of ScienceCrossrefGoogle Scholar

  • [6]

    H. Fallahi and Z. Atlasbaf, “Bandwidth enhancement of a CPW-fed monopole antenna with small fractal elements,” Int. J. Electronic Commun., vol. 69, pp. 590–595, 2015.CrossrefGoogle Scholar

  • [7]

    B. B. Mandelbrot, “The fractal geometry of nature,” in Henry Holt And Company, Revised edition, New York: W.H. Freeman and Company, 1983.Google Scholar

  • [8]

    V. V. Reddy and N. V. S. N. Sarma, “Poly fractal boundary circularly polarized microstrip antenna for WLAN/Wi-MAX applications,” Def. Sci. J., vol. 65, no. 5, pp. 379–384, 2015.CrossrefGoogle Scholar

  • [9]

    D. Li and J. F. Mao, “Coplanar waveguide-fed Koch-like sided Sierpinski hexagonal carpet multifractal monopole antenna,” IET Microwave Antennas Propag., vol. 8, pp. 358–366, 2014.CrossrefGoogle Scholar

  • [10]

    C. Puente, J. Romeu, R. Pous, and A. Cardama, “On the behavior of the Sierpinski multiband fractal antenna,” IEEE Trans. Antennas Propag., vol. 46, pp. 517–524, 1998.CrossrefGoogle Scholar

  • [11]

    R. Kumar and N. Kushwaha, “Design and investigation of sectoral circular disc monopole fractal antenna and its backscattering,” Eng. Sci. Technol. Int. J., vol. 20, pp. 18–27, 2016.Google Scholar

  • [12]

    C. Puente, “Fractal Antennas,” Ph.D. dissertation, Dept. Signal Theory and Commun., Universitat Politècnica de Catalunya, June 1997.Google Scholar

  • [13]

    K. Mandal and P. P. Sarkar, “A compact low profile wideband U-shape antenna with slotted circular ground plane,” Int. J. Electronic Commun., vol. 70, pp. 336–340, 2016.CrossrefGoogle Scholar

  • [14]

    J. G. Baek and K. C. Hwang, “Triple-band unidirectional circularly polarized hexagonal slot antenna with multiple L-shaped slits,” IEEE T Antenn. Propag., vol. 61, pp. 4831–4835, 2013.Web of ScienceCrossrefGoogle Scholar

  • [15]

    P. W. Tang and P. F. Wahid, “Hexagonal multiband fractal antenna,” IEEE Antennas Wirel. Propag. Lett., vol. 3, pp. 111–112, 2004.CrossrefGoogle Scholar

  • [16]

    N. A. Saidatul, A. A. H. Azremi, and P. J. Soh, “A hexagonal fractal antenna for multiband application,” in Int. Conf. Intelligent and Advanced Systems, Kaula Lumpur, Malaysia, November 25–28, 2007, IEEE, pp. 361–364.Google Scholar

  • [17]

    S. Agrawal, R. D. Gupta, and S. K. Behera, “A hexagonal shaped fractal antenna for UWB application,” in Int. Conf. Communications, Devices and Intelligent Systems (CODIS), Kolkata, India, December 28–29, 2012, IEEE, pp. 535–538.Google Scholar

  • [18]

    C. R. Samreen and S. Khant, “Miniaturized hexagonal-shaped fractal slot microstrip antenna for WLAN applications using DGS,” in Conf. Adv. Communication and Control Systems 2013, pp. 388–392.Google Scholar

  • [19]

    S. Tripathi, A. Mohan, and S. A. Yadav, “A compact dual band-notched fractal antenna for UWB application,” in Asia-Pacific Microwave Conf., Sendai, Japan, November 4–7, 2014, IEEE, pp. 205–207.Google Scholar

  • [20]

    K. S. Waghmode, S. B. Deosarkar, and P. K. Kadbe, “Bandwidth enhancement of a simple hexagonal antenna by using fractal geometry,” Int. J. Recent Innov. Trends Comput. Commun., vol. 3, no. 3, pp. 1274–1277, 2015.CrossrefGoogle Scholar

  • [21]

    D. Aissaoui, N. B. Hacen, and A. T. Denidni, “Design of a new fractal antenna with CPW-fed for UWB application,” in Int. Symp. Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, BC, Canada, July 19–24, 2015 IEEE, pp. 1970–1971.Google Scholar

  • [22]

    D. Upadhyay, I. Acharya, and A. K. Gupta, “DGS & DMS based hexagonal fractal antenna for UWB applications,” in Int. Conf. Communications and Signal Processing (ICCSP), Melmaruvathur, India, April 2–4, 2015, IEEE, pp. 176–179.Google Scholar

  • [23]

    S. Singhal, T. Goel, and A. K. Singh, “Hexagonal tree shaped ultra-wideband fractal antenna,” Int. J. Electronics Lett., vol. 5, pp. 335–348, 2016.Google Scholar

  • [24]

    M. P. Rajkumar and K. Sawant, “On the design of wheel-shaped fractal antenna,” Microw. Opt. Technol. Lett., vol. 53, no. 1, pp. 155–158, 2011.CrossrefWeb of ScienceGoogle Scholar

  • [25]

    D. Mitra, D. Das, and S. R. Bhadra Chaudhuri, “Bandwidth enhancement of microstrip line and CPW-fed asymmetrical slot antennas,” Prog. Electromagn. Res. Lett., vol. 32, pp. 69–79, 2012.CrossrefGoogle Scholar

  • [26]

    R. Kumar and P. Malathi, “On the design of CPW-fed diamond shape fractal antenna for UWB applications,” Int. J. Electron., vol. 98, pp. 1157–1168, 2011.CrossrefGoogle Scholar

  • [27]

    J. N. Lee and J. K. Park, “Compact UWB chip antenna design using the coupling concept,” Prog. Electromagn. Res., vol. 90, pp. 341–351, 2009.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2017-08-31

Published Online: 2018-01-19

Published in Print: 2018-08-28


Citation Information: Frequenz, Volume 72, Issue 9-10, Pages 443–453, ISSN (Online) 2191-6349, ISSN (Print) 0016-1136, DOI: https://doi.org/10.1515/freq-2017-0203.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in