Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Frequenz

Journal of RF-Engineering and Telecommunications

Editor-in-Chief: Jakoby, Rolf


IMPACT FACTOR 2017: 0.280
5-year IMPACT FACTOR: 0.297

CiteScore 2017: 0.38

SCImago Journal Rank (SJR) 2017: 0.128
Source Normalized Impact per Paper (SNIP) 2017: 0.243

Online
ISSN
2191-6349
See all formats and pricing
More options …
Volume 72, Issue 9-10

Issues

A Differential UWB Quasi-Yagi Antenna with A Reconfigurable Notched Band

Feng Wei
  • Corresponding author
  • Collaborative Innovation Center of Information Sensing and Understanding at Xidian University and National Key Laboratory of Antennas and Microwave Technology, Xidian University, Xi’an 710071, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xin Tong Zou
  • Collaborative Innovation Center of Information Sensing and Understanding at Xidian University and National Key Laboratory of Antennas and Microwave Technology, Xidian University, Xi’an 710071, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xin Yi Wang
  • Collaborative Innovation Center of Information Sensing and Understanding at Xidian University and National Key Laboratory of Antennas and Microwave Technology, Xidian University, Xi’an 710071, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bin Li / Xi Bei Zhao
  • Collaborative Innovation Center of Information Sensing and Understanding at Xidian University and National Key Laboratory of Antennas and Microwave Technology, Xidian University, Xi’an 710071, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-05-23 | DOI: https://doi.org/10.1515/freq-2018-0018

Abstract

A compact differential ultra-wide band (UWB) planar quasi-Yagi antenna is presented in this paper. The proposed antenna consists of a balanced stepped-impedance microstrip-slotline transition structure, a driver dipole and one parasitic strip. A wide differential-mode (DM) impedance bandwidth covering from 3.8 to 9.5 GHz is realized. Meanwhile, a high and wideband common-mode (CM) suppression can be achieved by employing the balanced stepped-impedance microstrip-slotline transition structure. It is noted that the DM passband is independent from the CM response, which can significantly simplify the design procedure. In addition, a reconfigurable sharp DM notched band from 5.6 to 6.7 GHz is generated by adding one pair of quarter-wavelength varactor-loaded short-circuited stubs adjacent to the microstrip line symmetrically. In order to illustrate the effectiveness of the design, two prototypes of the antennas are designed, fabricated, and measured. A good agreement between the simulated and measured results is observed.

Keywords: Ultra-wideband (UWB); differential antenna; differential-mode (DM); common-mode (CM); notched band

References

  • [1]

    P. Y. Qin, A. R. Weily, Y. J. Guo, T. S. Bird, and C. H. Liang, Frequency reconfigurable quasi-yagi folded dipole antenna, IEEE Trans. Antennas Propag., 58(2010), pp. 2742–2747.CrossrefWeb of ScienceGoogle Scholar

  • [2]

    K. W. Xu et al., A printed single-layer UWB monopole antenna with extended ground plane stubs, IEEE Antennas Wireless Propag. Lett., 12(2013), pp. 237–240.CrossrefWeb of ScienceGoogle Scholar

  • [3]

    W. Jiangniu, Z. Zhiqin, et al., A printed uwb vivaldi antenna using stepped connection structure between slotline and tapered patches, IEEE Antennas Wireless Propag. Lett., 13(2014), pp. 698–701.CrossrefWeb of ScienceGoogle Scholar

  • [4]

    W. R. Eisenstadt, B. Stengel, and B. M. Thompson, Micro Wave Differential Circuit Design Using Mixed Mode S Parameters, Norwood, MA: Artech House, 2006, pp.1–25.Google Scholar

  • [5]

    A. Locatelli et al., A planar, differential, and directive ultrawideband antenna, IEEE Trans. Antennas Propag., 58(2010), pp. 2439–2442.CrossrefWeb of ScienceGoogle Scholar

  • [6]

    L. Li et al., Ultra-wideband differential wide-slot antenna with improved radiation patterns and gain, IEEE Trans. Antennas Propag., 60(2012), pp. 6013–6018.CrossrefWeb of ScienceGoogle Scholar

  • [7]

    J. R. Kelly, P. S. Hall, and P. Gardner, Band-notched UWB antenna incorporating a microstrip open-loop resonator, IEEE Trans. Antennas Propag., 59(2011), pp. 3045–3048.Web of ScienceCrossrefGoogle Scholar

  • [8]

    C. T. Chuang, T. J. Lin, and S. J. Chung, A band-notched UWB monopole antenna with high notch-band-edge selectivity, IEEE Trans. Antennas Propag., 60(2012), pp. 4492–4499.Web of ScienceCrossrefGoogle Scholar

  • [9]

    Z. H. Tu, W. A. Li, et al., Single-layer differential cpw-fed notch-band tapered-slot uwb antenna, IEEE Antennas Wireless Propag. Lett., 13(2014), pp. 1296–1299.Web of ScienceCrossrefGoogle Scholar

  • [10]

    W. A. Li, Z. H. Tu, et al., Differential stepped-slot uwb antenna with common-mode suppression and dual sharp-selectivity notched bands, IEEE Antennas Wireless Propag. Lett., 15(2016), pp. 1120–1123.Web of ScienceCrossrefGoogle Scholar

  • [11]

    K. C. Gupta, R. Garg, I. Bahl, P. Bharitia, and M. Lines And Slotlines, 2nd ed, Boston, MA: Artech House, 1996.Google Scholar

About the article

Received: 2018-01-12

Published Online: 2018-05-23

Published in Print: 2018-08-28


National Natural Science Foundation of China (NSFC), Funder Id:, Grant Number: 61771055 and 61405152


Citation Information: Frequenz, Volume 72, Issue 9-10, Pages 401–406, ISSN (Online) 2191-6349, ISSN (Print) 0016-1136, DOI: https://doi.org/10.1515/freq-2018-0018.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in