Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Frequenz

Journal of RF-Engineering and Telecommunications

Editor-in-Chief: Jakoby, Rolf

12 Issues per year


IMPACT FACTOR 2016: 0.462

CiteScore 2016: 0.43

SCImago Journal Rank (SJR) 2016: 0.183
Source Normalized Impact per Paper (SNIP) 2016: 0.333

Online
ISSN
2191-6349
See all formats and pricing
More options …
Volume 71, Issue 3-4 (Mar 2017)

Issues

RF Behavior and Launcher Design for a Fast Frequency Step-tunable 236 GHz Gyrotron for DEMO

P. C. KalariaORCID iD: http://orcid.org/0000-0002-3097-2279
  • Corresponding author
  • Institute for Pulsed Power and Microwave Technology (IHM), Institute for Pulsed Power and Microwave Technology (IHM), Karlsruher Institut fur Technologie – Campus Nord, Hermann-von-Helmholtz-Platz 1, Building 421, Room no. 212, 76344 Eggenstein-Leopoldshafen, Germany
  • orcid.org/0000-0002-3097-2279
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ K. A. Avramidis
  • Institute for Pulsed Power and Microwave Technology (IHM), Institute for Pulsed Power and Microwave Technology (IHM), Karlsruher Institut fur Technologie – Campus Nord, Hermann-von-Helmholtz-Platz 1, Building 421, Room no. 212, 76344 Eggenstein-Leopoldshafen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. Franck
  • Institute for Pulsed Power and Microwave Technology (IHM), Institute for Pulsed Power and Microwave Technology (IHM), Karlsruher Institut fur Technologie – Campus Nord, Hermann-von-Helmholtz-Platz 1, Building 421, Room no. 212, 76344 Eggenstein-Leopoldshafen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ G. Gantenbein
  • Institute for Pulsed Power and Microwave Technology (IHM), Institute for Pulsed Power and Microwave Technology (IHM), Karlsruher Institut fur Technologie – Campus Nord, Hermann-von-Helmholtz-Platz 1, Building 421, Room no. 212, 76344 Eggenstein-Leopoldshafen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ S. Illy
  • Institute for Pulsed Power and Microwave Technology (IHM), Institute for Pulsed Power and Microwave Technology (IHM), Karlsruher Institut fur Technologie – Campus Nord, Hermann-von-Helmholtz-Platz 1, Building 421, Room no. 212, 76344 Eggenstein-Leopoldshafen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. Jin
  • Institute for Pulsed Power and Microwave Technology (IHM), Institute for Pulsed Power and Microwave Technology (IHM), Karlsruher Institut fur Technologie – Campus Nord, Hermann-von-Helmholtz-Platz 1, Building 421, Room no. 212, 76344 Eggenstein-Leopoldshafen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ I. Gr. Pagonakis
  • Institute for Pulsed Power and Microwave Technology (IHM), Institute for Pulsed Power and Microwave Technology (IHM), Karlsruher Institut fur Technologie – Campus Nord, Hermann-von-Helmholtz-Platz 1, Building 421, Room no. 212, 76344 Eggenstein-Leopoldshafen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Thumm
  • Institute for Pulsed Power and Microwave Technology (IHM), Institute for Pulsed Power and Microwave Technology (IHM), Karlsruher Institut fur Technologie – Campus Nord, Hermann-von-Helmholtz-Platz 1, Building 421, Room no. 212, 76344 Eggenstein-Leopoldshafen, Germany
  • Institute of Radio Frequency Engineering and Electronics (IHE), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. Jelonnek
  • Institute for Pulsed Power and Microwave Technology (IHM), Institute for Pulsed Power and Microwave Technology (IHM), Karlsruher Institut fur Technologie – Campus Nord, Hermann-von-Helmholtz-Platz 1, Building 421, Room no. 212, 76344 Eggenstein-Leopoldshafen, Germany
  • Institute of Radio Frequency Engineering and Electronics (IHE), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-12-14 | DOI: https://doi.org/10.1515/freq-2016-0212

Abstract

As part of the EUROfusion project, the conceptual design of a 1 MW 236 GHz hollow-cavity gyrotron is ongoing at IHM, KIT for a DEMOnstration Power Plant (DEMO), along with a 2 MW coaxial-cavity design concept. Fast frequency-tunable gyrotrons (tuning within a few seconds) are recommended for plasma stabilization using a non-steerable antenna. In this work, the mode-selection approach for such a frequency-tunable gyrotron is presented and suitable operating modes for fast frequency tunability are suggested. Magnetic field tuning has been studied as an effective technique to tune the gyrotron operating frequency. The step-tunability of the 236 GHz gyrotron within the frequency range of ±10 GHz in steps of 2–3 GHz is demonstrated in numerical simulations. A hybrid-type Quasi-Optical Launcher (QOL) has been designed for a step-frequency tunable gyrotron with sufficiently high Fundamental Gaussian Mode Content (FGMC).

Keywords: DEMO; frequency tenability; gyrotron; plasma instabilities control; tokamak; quasi-optical launcher

References

  • [1] M. Thumm, “State-of-the-art of high power gyro-devices and free electron maseres, update 2014,” Scientific Report. KIT-SR 7693, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2015.

  • [2] V. Erckmann, W. Kasparek, B. Plaum, C. Lechte, M. I. Petelin, H. Braune, G. Gantenbein, H. P. Laqua, L. Lubiako, N. B. Marushchenko, G. Michel, Y. Turkin, M. Weissgerber, and the W7-X ECRH-teams at IPP Greifswald, IPF Stuttgart, and KIT, Large scale CW ECRH systems: Some considerations, EPJ Web of Conferences, 32, 04006, 2012.

  • [3] T. Omori, M. A. Henderson, F. Albajar, S. Alberti, U. Baruah, T. S. Bigelow, B. Beckett, R. Bertizzolo, T. Bonicelli, A. Bruschi, J. B. Caughman, R. Chavan, S. Cirant, A. Collazos, D. Cox, C. Darbos, M. R. de Baar, G. Denisov, D. Farina, F. Gandini, T. Gassmann, T. P. Goodman, R. Heidinger, J. P. Hogge, S. Illy, O. Jean, J. Jin, K. Kajiwara, W. Kasparek, A. Kasugai, S. Kern, N. Kobayashi, H. Kumric, J. D. Landis, A. Moro, C. Nazare, Y. Oda, I. Pagonakis, B. Piosczyk, P. Platania, B. Plaum, E. Poli, L. Porte, D. Purohit, G. Ramponi, S. L. Rao, D. A. Rasmussen, D. M. S. Ronden, T. Rzesnicki, G. Saibene, K. Sakamoto, F. Sanchez, T. Scherer, M.A. Shapiro, C. Sozzi, P. Spaeh, D. Strauss, O. Sauter, K. Takahashi, R. J. Temkin, M. Thumm, M. Q. Tran, V. S. Udintsev, and H. Zohm, “Overview of the ITER EC H&CD system and its capabilities,” Fusion Engineering and Design., vol. 86, pp. 951–954, 2011.Google Scholar

  • [4] M. Thumm, “Recent advances in the worldwide fusion gyrotron development,” IEEE Transactions on Plasma Science., vol. 42, no. 3, pp. 590–599, 2014.Google Scholar

  • [5] P. C. Kalaria, M. V. Kartikeyan, and M. Thumm, “Design of 170 GHz, 1.5-MW conventional cavity gyrotron for plasma heating,” IEEE Transactions on Plasma Science., vol. 42, no. 6, pp. 1522–1528, 2014.Google Scholar

  • [6] G. Federici, R. Kemp, D. Ward, C. Bachmann, T. Franke, S. Gonzalez, C. Lowry, M. Gadomska, J. Harman, B. Meszaros, C. Morlock, F. Romanelli, and R. Wenninger, “Overview of EU DEMO design and R&d activities,” Fusion Engineering and Design., vol. 89, no. 7–8, pp. 882–889, 2014.Google Scholar

  • [7] E. Poli, G. Tardini, H. Zohm, E. Fable, D. Farina, L. Figini, N. B. Marushchenko, and L. Porte, “Electron-cyclotron-current-drive efficiency in DEMO plasmas,” Nuclear Fusion., vol. 53, pp. 013011, 2013.Google Scholar

  • [8] K. A. Avramides, O. Dumbrajs, S. Kern, I. Gr. Pagonakis, and J. L. Vomvoridis. Mode Selection for a 170 GHz, 1 MW Gyrotron, 35th EPS Conference on Plasma Phys., P-4.105, Hersonissos, Greece, 9–13 June 2008.

  • [9] P. C. Kalaria, A. K. Avramidis, J. Franck, G. Gantenbein, S. Illy, I. Gr, P., M. Thumm, and J. Jelonnek, Interaction Circuit Design and RF Behavior of a 236 GHz Gyrotron for DEMO, 9th German Microwave Conference (GeMiC 2015), Nuremberg, Germany, 16–18 March 2015.

  • [10] R. Wenninger, F. Arbeiter, J. Aubert, L. Aho-Mantila, R. Albanese, R. Ambrosino, C. Angioni, J. -F. Artaud, M. Bernert, E. Fable, A. Fasoli, G. Federici, J. Garcia, G. Giruzzi, F. Jenko, P. Maget, M. Mattei, F. Maviglia, E. Poli, G. Ramogida, C. Reux, M. Schneider, B. Sieglin, F. Villone, M. Wischmeier, and H. Zohm, “Advances in the physics basis for the european DEMO design,” Nucl. Fusion., vol. 55, pp. 063003, 2015.Google Scholar

  • [11] S. Garavaglia, W. Bin, A. Bruschi, G. Granucci, G. Grossetti, J. Jelonnek, A. Moro, N. Rispoli, D. Strauss, Q. M. Tran, and T. Franke, “Preliminary conceptual design of DEMO EC system,” AIP Conf. Proc., vol. 1689, pp. 090009, 2015.Google Scholar

  • [12] P. C. Kalaria, K. A. Avramidis, J. Franck, S. Illy, I. Gr, P., M. Thumm, and J. Jelonnek, “Multi-frequency Operation of DEMO Gyrotron with Realistic Electron Beam Parameters,” in 16th IEEE International Vacuum Electronics Conference (IVEC 2015), Beijing, China, 27–29 April 2015.

  • [13] V. Igochine, “Active control of magneto-hydrodynamic instabilities in hot plasmas,” Springer Ser. Atomic, Opt. Plasma Phys., 2014, DOI: .CrossrefGoogle Scholar

  • [14] R. J. Buttery, S. Gunter, G. Giruzzi, T. C. Hender, D. Howell, G. Huysmans, R. J. La Haye, M. Maraschek, H. Reimerdes, O. Sauter, C. D. Warrick, H. R. Wilson, and H. Zohm, “Neoclassical tearing modes,” Plasma Phys. Control. Fusion, vol. 42, pp. 61–73, 2000, DOI: .CrossrefGoogle Scholar

  • [15] A. W. Morris, “MHD instability control, disruptions, and error fields in tokamaks,” Plasma Phys. Cantrol. Fusion, vol. 34, no. 13, pp. 1871–1879, 1992.Google Scholar

  • [16] F. Felici, J. X. Rossel, G. Canal, S. Coda, B. P. Duval, T. P. Goodman, Y. Martin, J. -M. Moret, O. Sauter, D. Testa, and the TCV Team, “Real-time control of multiple MHD instabilities on TCV by ECRH/ECCD,” EPJ Web Conf., vol. 32, 02005, pp. 1–6. 2012, DOI: .CrossrefGoogle Scholar

  • [17] H. Zohm and M. Thumm, “On the use of step-tuneable gyrotrons in ITER,” J. Phys. Conf. Ser., vol. 25, pp. 274–282, 2005, DOI: .CrossrefGoogle Scholar

  • [18] M. Thumm, A. Arnold, E. Borie, O. Braz, G. Dammertz, O. Dumbrajs, K. Koppenburg, M. Kuntze, G. Michel, and B. Piosczyk, “Frequency step-tunable (114–170 GHz) megawatt gyrotrons for plasma physics applications,” Fusion Eng. Des., vol. 53, no. 1–4, pp. 407–421, 2001.Google Scholar

  • [19] J. Franck, A. K. Avramidis, I. Gr, P.,S. Illy, G. Gantenbeim, M. Thumm, and J. Jelonnek, “Multi-Frequency Design of a 2 MW Coaxial-Cavity Gyrotron for DEMO,” in 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz 2015), Hong Kong, China, 23–28 Aug. 2015.

  • [20] M. Thumm, A. Arnold, R. Heidinger, M. Rohde, R. Schwab, and R. Spoerl, “Status report on CVD-diamond window development for high power ECRH,” Fusion Eng. Des., vol. 53, no. 1, pp. 517–524, 2001.Google Scholar

  • [21] X. Yang, G. Dammertz, R. Heidinger, K. Koppenburg, F. Leuterer, A. Meier, B. Piosczyk, D. Wagner, and M. Thumm, “Design of an ultra-broadband single-disk output window for a frequency step-tunable 1 MW gyrotron,” Fusion Eng. Des., vol. 74, pp. 489–493, Nov. 2005.Google Scholar

  • [22] G. Gantenbein, A. Samartsev, G. Aiello, G. Dammertz, J. Jelonnek, M. Losert, A. Schlaich, T. Scherer, D. Strauss, M. Thumm, and D. Wagner, “First operation of a step-frequency tunable 1-MW gyrotron with a diamond brewster angle output window,” IEEE Trans. Electron Devices, vol. 61, no. 6, pp. 1806–1811, 2014.Google Scholar

  • [23] K. A. Avramides, I. Gr. Pagonakis, C. T. Iatrou, and J. L. Vomvoridis. “EURIDICE: A code-package for gyrotron interaction simulations and cavity design,” in 17th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (EC-17), EPJ Web of Conferences, 32, 2012.

  • [24] S. Kern, “Numerical Codes for interaction calculations in gyrotron cavities at FZK,” in Proc. 21st Int. Conf. Infrared and Millimeter Waves, Berlin, Invited Paper AF2, 1996; and “Numerische Simulation der Gyrotron-Wechselwirkung” (Numerical simulation of the gyrotron interaction), Scientific Report FZKA 5837, Karlsruhe, 1997.

  • [25] M. Schmid, J. Franck, P. C. Kalaria, K. A. Avramidis, G. Gantenbein, S. Illy, J. Jelonnek, I. Gr, P.,T. Rzesnicki, and M. Thumm, “Gyrotron development at KIT: FULGOR test facility and gyrotron concepts for DEMO,” Fusion Eng. Des., vol. 96–97, pp. 589–592, 2015.Google Scholar

  • [26] K. Sakamoto, K. Kajiwara, Y. Oda, K. Hayashi, K. Takahashi, T. Kobayashi, and S. Moriyama, “Status of high power gyrotron development in JAEA,” in 14th IEEE International Vacuum Electronics Conference, Paris, France, 21–23 May 2013.

  • [27] G. S. Nusinovich, Introduction to the Physics of Gyrotron. Maryland: The Johns Hopkins University Press, 2004.Google Scholar

  • [28] M. Thumm, J. Franck, P. C. Kalaria, K. A. Avramidis, G. Gantenbein, S. Illy, I. G. Pagonakis, M. Schmid, C. Wu, J. Zhang, and J. Jelonnek, “Towards a 0.24-THz, 1-to-2-MW-class gyrotron for DEMO,” Terahertz Sci. Technol., vol. 8, no. 3, pp. 85–100, 2015.Google Scholar

  • [29] O. Dumbrajs, T. Idehara, Y. Iwata, S. Mitsudo, I. Ogawa, and B. Piosczyk, “Hysteresis-like effects in gyrotron oscillators,” Phys. Plasmas, vol. 10, no. 5, pp. 1183–1186, 2003.Google Scholar

  • [30] S. N. Vlasov, L. I. Zagryadskaya, and M. I. Petelin, “Transformation of a whispering gallery mode, propagating in a circular waveguide into Beam of waves,” Radio Eng. Electron. Phys., vol. 20, pp. 14–17, 1975.Google Scholar

  • [31] G. G. Denisov, A. N. Kuftin, V. I. Malygin, N. P. Venediftov, D. V. Vinogradov, and V. E. Zapevalov, “110 GHz gyrotron with built-in high efficiency converter,” Int. J. Electron., vol. 72, pp. 1079–1091, 1992.Google Scholar

  • [32] A. V. Chirkov, G. G. Denisov, M. L. Kulygin, V. I. Malygin, S. A. Malygin, A. B. Pavel’ev, and E. A. Soluyanova, “Use of huygens’ principle for analysis and synthesis of the fields in oversized waveguides,” Radiophys. Quant. Electron., vol. 49, no. 5, pp. 344–353, 2006.Google Scholar

  • [33] J. Jin, M. Thumm, B. Piosczyk, S. Kern, J. Flamm, and T. Rzesnicki, “Novel numerical method for the analysis and synthesis of the fields in highly oversized waveguide mode converters,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, pp. 1661–1668, 2009.Google Scholar

  • [34] J. Jin, J. Flamm, J. Jelonnek, S. Kern, I. Pagonakis, T. Rzesnicki, and M. Thumm, “High-efficiency quasi-optical mode converter for a 1-MW TE32,9-mode gyrotron,” IEEE Trans. Plasma Sci., vol. 41, no. 10, pp. 2748–2753, 2013.Google Scholar

  • [35] J. Jin, G. Gantenbein, J. Jelonnek, and M. Thumm, “A numerical method for the synthesis of highly oversized waveguide mode converters based on the helmholtz-kirchhoff integral theorem,” to be submitted to IEEE Trans. on Antennas & Propagation for publication.

  • [36] J. Jin, G. Gantenbein, J. Jelonnek, T. Rzesnicki, and M. Thumm, “Development of mode conversion waveguides at KIT,” EPJ Web Conf., vol. 87, pp. 04003, 2015.Google Scholar

About the article

Received: 2016-07-08

Published Online: 2016-12-14

Published in Print: 2017-03-01


Citation Information: Frequenz, ISSN (Online) 2191-6349, ISSN (Print) 0016-1136, DOI: https://doi.org/10.1515/freq-2016-0212.

Export Citation

©2017 by De Gruyter. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in