Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Groups Complexity Cryptology

Managing Editor: Shpilrain, Vladimir / Weil, Pascal

Editorial Board: Ciobanu, Laura / Conder, Marston / Eick, Bettina / Elder, Murray / Fine, Benjamin / Gilman, Robert / Grigoriev, Dima / Ko, Ki Hyoung / Kreuzer, Martin / Mikhalev, Alexander V. / Myasnikov, Alexei / Perret, Ludovic / Roman'kov, Vitalii / Rosenberger, Gerhard / Sapir, Mark / Thomas, Rick / Tsaban, Boaz / Capell, Enric Ventura / Lohrey, Markus

CiteScore 2018: 0.80

SCImago Journal Rank (SJR) 2018: 0.368
Source Normalized Impact per Paper (SNIP) 2018: 1.061

Mathematical Citation Quotient (MCQ) 2017: 0.32

See all formats and pricing
More options …

Thompson's group F is 1-counter graph automatic

Murray Elder / Jennifer Taback
Published Online: 2016-04-12 | DOI: https://doi.org/10.1515/gcc-2016-0001


It is not known whether Thompson's group F is automatic. With the recent extensions of the notion of an automatic group to graph automatic by Kharlampovich, Khoussainov and Miasnikov and then to đť’ž-graph automatic by the authors, a compelling question is whether F is graph automatic or đť’ž-graph automatic for an appropriate language class đť’ž. The extended definitions allow the use of a symbol alphabet for the normal form language, replacing the dependence on generating set. In this paper we construct a 1-counter graph automatic structure for F based on the standard infinite normal form for group elements.

Keywords: Thompson's group F; automatic group; graph automatic group; đť’ž-graph automatic group

MSC: 20F65; 68Q45


  • 1

    D. Berdinsky and B. Khoussainov, On automatic transitive graphs, Developments in Language Theory, Lecture Notes in Comput. Sci. 8633, Lecture Notes in Comput. Sci. (2014), 1–12. Google Scholar

  • 2

    K. S. Brown and R. Geoghegan, An infinite-dimensional torsion-free FPF group, Invent. Math. 77 (1984), 2, 367–381. Google Scholar

  • 3

    J. Burillo, Quasi-isometrically embedded subgroups of Thompson's group F, J. Algebra 212 (1999), 1, 65–78. Google Scholar

  • 4

    J. W. Cannon, W. J. Floyd and W. R. Parry, Introductory notes on Richard Thompson's groups, Enseign. Math. (2) 42 (1996), 3–4, 215–256. Google Scholar

  • 5

    S. Cleary, S. Hermiller, M. Stein and J. Taback, Tame combing and almost convexity conditions, Math. Z. 269 (2011), 3–4, 879–915. Web of ScienceGoogle Scholar

  • 6

    S. Cleary and J. Taback, Seesaw words in Thompson's group F, Geometric Methods in Group Theory, Contemp. Math. 372, American Mathematical Society, Providence (2005), 147–159. Google Scholar

  • 7

    M. Elder, A context-free and a 1-counter geodesic language for a Baumslag–Solitar group, Theoret. Comput. Sci. 339 (2005), 2–3, 344–371. Google Scholar

  • 8

    M. Elder and J. Taback, 𝒞-graph automatic groups, J. Algebra 413 (2014), 289–319. Web of ScienceGoogle Scholar

  • 9

    D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson and W. P. Thurston, Word Processing in Groups, Jones and Bartlett, Boston, 1992. Google Scholar

  • 10

    S. A. Greibach, Remarks on blind and partially blind one-way multicounter machines, Theoret. Comput. Sci. 7 (1978), 3, 311–324. Google Scholar

  • 11

    V. S. Guba and M. V. Sapir, The Dehn function and a regular set of normal forms for R. Thompson's group F, J. Aust. Math. Soc. Ser. A 62 (1997), 3, 315–328. Google Scholar

  • 12

    O. Kharlampovich, B. Khoussainov and A. Miasnikov, From automatic structures to automatic groups, Groups Geom. Dyn. 8 (2014), 1, 157–198. Google Scholar

  • 13

    V. Shpilrain and A. Ushakov, Thompson's group and public key cryptography, Applied Cryptography and Network Security, Lecture Notes in Comput. Sci. 3531, Springer, Berlin (2005), 151–163. Google Scholar

  • 14

    J. Taback and S. Younes, Tree-based language complexity of Thompson's group F, Groups Complex. Cryptol. 7 (2015), 2, 135–152. Google Scholar

About the article

Received: 2015-01-18

Published Online: 2016-04-12

Published in Print: 2016-05-01

Funding Source: Australian Research Council

Award identifier / Grant number: FT110100178

Funding Source: National Science Foundation

Award identifier / Grant number: DMS-1105407

Funding Source: Simons Foundation

Award identifier / Grant number: 31736 to Bowdoin College

The first author is supported by Australian Research Council grant FT110100178. The second author acknowledges support from National Science Foundation grant DMS-1105407 and Simons Foundation grant 31736 to Bowdoin College.

Citation Information: Groups Complexity Cryptology, Volume 8, Issue 1, Pages 21–33, ISSN (Online) 1869-6104, ISSN (Print) 1867-1144, DOI: https://doi.org/10.1515/gcc-2016-0001.

Export Citation

© 2016 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in