Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Groups Complexity Cryptology

Managing Editor: Shpilrain, Vladimir / Weil, Pascal

Editorial Board: Ciobanu, Laura / Conder, Marston / Eick, Bettina / Elder, Murray / Fine, Benjamin / Gilman, Robert / Grigoriev, Dima / Ko, Ki Hyoung / Kreuzer, Martin / Mikhalev, Alexander V. / Myasnikov, Alexei / Perret, Ludovic / Roman'kov, Vitalii / Rosenberger, Gerhard / Sapir, Mark / Thomas, Rick / Tsaban, Boaz / Capell, Enric Ventura / Lohrey, Markus

CiteScore 2018: 0.80

SCImago Journal Rank (SJR) 2018: 0.368
Source Normalized Impact per Paper (SNIP) 2018: 1.061

Mathematical Citation Quotient (MCQ) 2017: 0.32

See all formats and pricing
More options …

A PTIME solution to the restricted conjugacy problem in generalized Heisenberg groups

Kenneth R. Blaney / Andrey Nikolaev
Published Online: 2016-04-09 | DOI: https://doi.org/10.1515/gcc-2016-0003


We examine the Anshel–Anshel–Goldfeld key exchange protocol with a generalized Heisenberg group, Hm, as a platform. We show that subgroup-restricted simultaneous conjugacy search problem in Hm can be solved in quasi-quintic time, which allows the computation of the private keys of the parties.

Keywords: Anshel–Anshel–Goldfeld protocol; key establishment; conjugacy problem; generalized Heisenberg group

MSC: 20F10; 20F18; 94A60


  • 1

    I. Anshel, M. Anshel and D. Goldfeld, An algebraic method for public-key cryptography, Math. Res. Lett. 6 (1999), 287–291. CrossrefGoogle Scholar

  • 2

    P. D. Domich, R. Kannan and L. E. Trotter, Jr., Hermite normal form computation using modulo determinant arithmetic, Math. Oper. Res. 12 (1987), 1, 50–59. Google Scholar

  • 3

    B. Eick and D. Kahrobaei, Polycyclic groups: A new platform for cryptology?, preprint 2004, http://arxiv.org/abs/math/0411077.

  • 4

    D. Hofheinz and R. Steinwandt, A practical attack on some braid group based cryptographic primitives, Public Key Cryptography (PKC 2003), Lecture Notes in Comput. Sci. 2567, Springer, Berlin (2002), 187–198. Google Scholar

  • 5

    D. Kahrobaei and H. T. Lam, Heisenberg groups as platform for the AAG key-exchange protocol, IEEE 22nd International Conference on Network Protocols (Raleigh 2014), IEEE Press, Piscataway (2014), 660–664. Google Scholar

  • 6

    K. H. Ko, S. J. Lee, J. H. Cheon, J. W. Han, J. Kang and C. Park, New public-key cryptosystem using braid groups, Advances in Cryptology (CRYPTO 2000), Lecture Notes in Comput. Sci. 1880, Springer, Berlin (2000), 166–183. Google Scholar

  • 7

    S. J. Lee and E. Lee, Potential weaknesses of the commutator key agreement protocol based on braid groups, Advances in Cryptology (EUROCRYPT 2002), Lecture Notes in Comput. Sci. 2332, Springer, Berlin (2002), 14–28. Google Scholar

  • 8

    J. Macdonald, A. Myasnikov, A. Nikolaev and S. Vassileva, Logspace and compressed-word computations in nilpotent groups, preprint 2015, http://arxiv.org/abs/1503.03888.

  • 9

    D. Micciancio and B. Warinschi, A linear space algorithm for computing the hermite normal form, Electronic Colloquium on Computational Complexity, Report No. 74, Department of Computer Science and Engineering, University of California, San Diego, 2000. Google Scholar

  • 10

    A. Myasnikov, V. Shpilrain and A. Ushakov, Random subgroups of braid groups: An approach to cryptanalysis of a braid group based cryptographic protocol, Public Key Cryptography (PKC 2006), Lecture Notes in Comput. Sci. 3958, Springer, Berlin (2006), 302–314. Google Scholar

  • 11

    A. Myasnikov and A. Ushakov, Length based attack and braid groups: Cryptanalysis of Anshel–Anshel–Goldfeld key exchange protocol, Public Key Cryptography (PKC 2007), Lecture Notes in Comput. Sci. 4450, Springer, Berlin (2007), 76–88. Google Scholar

  • 12

    D. Ruinskiy, A. Shamir and B. Tsaban, Length-based cryptanalysis: The case of Thompson's group, J. Math. Cryptol. 1 (2008), 4, 359–372. Google Scholar

  • 13

    V. Shpilrain and A. Ushakov, Thompson's group and public key cryptography, Proceedings of the Third International Conference on Applied Cryptography and Network Security (ACNS'05), Springer, Berlin (2005), 151–163. Google Scholar

  • 14

    V. Shpilrain and A. Ushakov, The conjugacy search problem in public key cryptography: Unnecessary and insufficient, Appl. Algebra Engrg. Comm. Comput. 17 (2006), 3–4, 285–289. Google Scholar

About the article

Received: 2015-05-18

Published Online: 2016-04-09

Published in Print: 2016-05-01

Citation Information: Groups Complexity Cryptology, Volume 8, Issue 1, Pages 69–74, ISSN (Online) 1869-6104, ISSN (Print) 1867-1144, DOI: https://doi.org/10.1515/gcc-2016-0003.

Export Citation

© 2016 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in