Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Groups Complexity Cryptology

Managing Editor: Shpilrain, Vladimir / Weil, Pascal

Editorial Board: Ciobanu, Laura / Conder, Marston / Eick, Bettina / Elder, Murray / Fine, Benjamin / Gilman, Robert / Grigoriev, Dima / Ko, Ki Hyoung / Kreuzer, Martin / Mikhalev, Alexander V. / Myasnikov, Alexei / Perret, Ludovic / Roman'kov, Vitalii / Rosenberger, Gerhard / Sapir, Mark / Thomas, Rick / Tsaban, Boaz / Capell, Enric Ventura / Lohrey, Markus


CiteScore 2018: 0.80

SCImago Journal Rank (SJR) 2018: 0.368
Source Normalized Impact per Paper (SNIP) 2018: 1.061

Mathematical Citation Quotient (MCQ) 2017: 0.32

Online
ISSN
1869-6104
See all formats and pricing
More options …

The automorphism group of a finitely generated virtually abelian group

Bettina Eick
  • Corresponding author
  • Institut Computational Mathematics, Fachbereich Mathematik und Informatik, Technische Universität Braunschweig, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-04-09 | DOI: https://doi.org/10.1515/gcc-2016-0007

Abstract

We describe a practical algorithm to compute the automorphism group of a finitely generated virtually abelian group. As application, we describe the automorphism groups of some small-dimensional crystallographic groups.

Keywords: Automorphism group; explicit computations; virtually abelian group

MSC: 20E36; 20-04; 20E22

References

  • 1

    B. Assmann and B. Eick, Computing polycyclic presentations of polycyclic matrix groups, J. Symbolic Comput. 40 (2005), 1269–1284. Google Scholar

  • 2

    B. Assmann and B. Eick, Testing polycyclicity of finitely generated rational matrix groups, Math. Comp. 76 (2007), 259, 1669–1682. Google Scholar

  • 3

    L. Auslander, The automorphism group of a polycyclic group, Ann. of Math. (2) 89 (1969), 314–322. Google Scholar

  • 4

    H. Brown, R. Bülow, J. Neubüser, H. Wondratschek and H. Zassenhaus, Crystallographic Groups of Four-Dimensional Space, John Wiley, New York, 1978. Google Scholar

  • 5

    J. J. Cannon and D. F. Holt, Automorphism group computation and isomorphism testing in finite groups, J. Symbolic Comput. 35 (2003), 241–267. Google Scholar

  • 6

    W. A. de Graaf and A. Pavan, Constructing arithmetic subgroups of unipotent groups, J. Algebra 322 (2009), 11, 3950–3970. Web of ScienceGoogle Scholar

  • 7

    A. S. Detinko, D. L. Flannery and E. A. O'Brien, Algorithms for the Tits alternative and related problems, J. Algebra 344 (2011), 397–406. Web of ScienceGoogle Scholar

  • 8

    B. Eick, On the Fitting subgroup of a polycyclic-by-finite group and its applications, J. Algebra 242 (2001), 176–187. Google Scholar

  • 9

    B. Eick, C. R. Leedham-Green and E. A. O'Brien, Constructing automorphism groups of p-groups, Comm. Algebra 30 (2002), 2271–2295. Google Scholar

  • 10

    V. Felsch and F. Gähler, CrystCap – A libarary of crystallographic groups. A refereed GAP 4 package, 2000. Google Scholar

  • 11

    D. Goncalves and P. Wong, Automorphisms of the two-dimensional crystallographic groups, Comm. Algebra 42 (2014), 909–931. Web of ScienceGoogle Scholar

  • 12

    F. Grunewald and D. Segal, Some general algorithms, I: Arithmetic groups, Ann. of Math. (2) 112 (1980), 531–583. Google Scholar

  • 13

    F. Grunewald and D. Segal, Some general algorithms, II: Nilpotent groups, Ann. of Math. (2) 112 (1980), 585–617. Google Scholar

  • 14

    D. F. Holt, B. Eick and E. A. O'Brien, Handbook of Computational Group Theory, Discrete Math. Appl. (Boca Raton), Chapman & Hall/CRC, Boca Raton, 2005. Google Scholar

  • 15

    A. L. Mal'cev, On certain classes of infinite solvable groups, Amer. Math. Soc. Transl. Ser. 2 2 (1956), 1–21. Google Scholar

  • 16

    E. A. O'Brien, Computing automorphism groups of p-groups, Math. Appl. Dordr. 325 (1995), 83–90. Google Scholar

  • 17

    J. Opgenorth, Dual cones and the Voronoi algorithm, Exp. Math. 10 (2001), 4, 599–608. Google Scholar

  • 18

    D. J. S. Robinson, Applications of cohomology to the theory of groups, Groups – St. Andrews 1981, London Math. Soc. Lecture Note Ser. 71, Cambridge University Press, Cambridge (1981), 46–80. Google Scholar

  • 19

    M. J. Smith, Computing automorphisms of finite soluble groups, PhD thesis, Australian National University, Canberra, 1995. Google Scholar

  • 20

    J. Tits, Free subgroups in linear groups, J. Algebra 20 (1972), 250–270. Google Scholar

  • 21

    The GAP Group, GAP–Groups, Algorithms and Programming, Version 4.4, 2005, http://www.gap-system.org.

About the article

Received: 2015-11-01

Revised: 2016-01-11

Published Online: 2016-04-09

Published in Print: 2016-05-01


Citation Information: Groups Complexity Cryptology, Volume 8, Issue 1, Pages 35–45, ISSN (Online) 1869-6104, ISSN (Print) 1867-1144, DOI: https://doi.org/10.1515/gcc-2016-0007.

Export Citation

© 2016 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Jason A.C. Gallas
International Journal of Modern Physics C, 2018

Comments (0)

Please log in or register to comment.
Log in