Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Groups Complexity Cryptology

Managing Editor: Shpilrain, Vladimir / Weil, Pascal

Editorial Board Member: Blackburn, Simon R. / Conder, Marston / Dehornoy, Patrick / Eick, Bettina / Fine, Benjamin / Gilman, Robert / Grigoriev, Dima / Ko, Ki Hyoung / Kreuzer, Martin / Mikhalev, Alexander V. / Myasnikov, Alexei / Roman'kov, Vitalii / Rosenberger, Gerhard / Sapir, Mark / Schäge, Sven / Thomas, Rick / Tsaban, Boaz / Capell, Enric Ventura

2 Issues per year


CiteScore 2016: 0.35

SCImago Journal Rank (SJR) 2016: 0.372
Source Normalized Impact per Paper (SNIP) 2016: 0.517

Mathematical Citation Quotient (MCQ) 2016: 0.23

Online
ISSN
1869-6104
See all formats and pricing
More options …

Computing discrete logarithms using 𝒪((log q)2) operations from {+,-,×,÷,&}

Christian Schridde
  • Corresponding author
  • Department of Mathematics and Computer Science, University of Marburg, Germany. Current address: Federal Office for Information Security, Bonn, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-10-11 | DOI: https://doi.org/10.1515/gcc-2016-0009

Abstract

Given a computational model with registers of unlimited size that is equipped with the set {+,-,×,÷,&}=:𝖮𝖯 of unit cost operations, and given a safe prime number q, we present the first explicit algorithm that computes discrete logarithms in q* to a base g using only 𝒪((logq)2) operations from 𝖮𝖯. For a random n-bit prime number q, the algorithm is successful as long as the subgroup of q* generated by g and the subgroup generated by the element p=2log2(q) share a subgroup of size at least 2(1-𝒪(logn/n))n.

Keywords: Cryptography; discrete logarithm problem; Fermat quotient; cyclicintegers

MSC 2010: 68Q25; 68W40; 11Y16

References

  • [1]

    Allender E., Bürgisser P., Kjeldgaard-Pedersen J. and Miltersen P. B., On the complexity of numerical analysis, Proceeding of the 21st Annual IEEE Conference on Computational Complexity (CCC 2006), IEEE Press, Piscataway (2006), 331–339. Google Scholar

  • [2]

    Baran I., Demaine E. D. and Pǎtraşcu M., Subquadratic algorithms for 3SUM, Algorithms and Data Structures, Lecture Notes in Comput. Sci. 3608, Springer, Berlin (2005), 409–421. Google Scholar

  • [3]

    Du X., Klapper A. and Chen Z., Linear complexity of pseudorandom sequences generated by Fermat quotients and their generalizations, Inf. Process. Lett. 112 (2012), no. 6, 233–237. Google Scholar

  • [4]

    Goresky M., Klapper A., Murty R. and Shparlinski I. E., On decimations of l-sequences, SIAM J. Discrete Math. 18 (2004), no. 1, 130–140. Google Scholar

  • [5]

    van Lint J. H., Introduction to Coding Theory, 3rd ed., Springer, Berlin, 1999. Google Scholar

  • [6]

    Lürwer-Brüggemeier K. and Ziegler M., On faster integer calculations using non-arithmetic primitives, Proceedings of the 7th International Conference on Unconventional Computation (UC’08), Lecture Notes in Comput. Sci. 5204, Springer, Berlin (2008), 111–128. Google Scholar

  • [7]

    Pomerance C. and Shparlinski I., Smooth orders and cryptographic applications, ANTS-V Proceedings of the 5th International Symposium on Algorithmic Number Theory, University of Sydney, Sydney (2002), 338–348. Google Scholar

  • [8]

    Pratt V. R., Rabin M. O. and Stockmeyer L. J., A characterization of the power of vector machines, STOC – Sixth Annual ACM Symposium on Theory of Computing, ACM, San Diego (1974), 122–134. Google Scholar

  • [9]

    Shamir A., Factoring numbers in 𝒪(log(n)) arithmetic steps, Inf. Process. Lett. 8 (1979), no. 1, 28–31. Google Scholar

About the article

Received: 2015-09-08

Published Online: 2016-10-11

Published in Print: 2016-11-01


Citation Information: Groups Complexity Cryptology, ISSN (Online) 1869-6104, ISSN (Print) 1867-1144, DOI: https://doi.org/10.1515/gcc-2016-0009.

Export Citation

© 2016 by De Gruyter. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in