[1]

Abdollahi A., Ashraf F. and Shaker S. M.,
The symmetric group of degree six can be covered by 13 and no fewer proper subgroups,
Bull. Malays. Math. Sci. Soc. 30 (2007), 57–58.

[2]

Anderson I.,
Combinatorics of Finite Sets,
Dover Publications, Mineola, 2002.

[3]

Blackburn S.,
Sets of permutations that generate the symmetric group pairwise,
J. Combin. Theory Ser. A 113 (2006), 1572–1581.

[4]

Britnell J. R., Evseev A., Guralnick R. M., Holmes P. E. and Maróti A.,
Sets of elements that pairwise generate a linear group,
J. Combin. Theory Ser. A 115 (2008), 442–465.

[5]

Bruckheimer M., Bryan A. C. and Muir A.,
Groups which are the union of three subgroups,
Amer. Math. Monthly 77 (1970), 52–57.

[6]

Bryce R. A., Fedri V. and Serena L.,
Subgroup coverings of some linear groups,
Bull. Aust. Math. Soc. 60 (1999), 239–244.

[7]

Cohn J. H. E.,
On *n*-sum groups,
Math. Scand. 75 (1994), 44–58.

[8]

Conway J. H., Curtis R. T., Norton S. P., Parker R. A. and Wilson R. A.,
Atlas of Finite Groups,
Oxford University Press, Oxford, 2005.

[9]

Epstein M., Magliveras S. and Nikolova D.,
The covering numbers of ${A}_{9}$ and ${A}_{11}$,
J. Combin. Math. Combin. Comput., to appear.

[10]

Erdős P., Ko C. and Rado R.,
Intersection theorems for systems of finite sets,
Q. J. Math. Oxford 12 (1961), 313–320.

[11]

Greco D.,
I gruppi che sono somma di quattro sottogruppi,
Rend. Accad. Sci. Napoli 18 (1951), 74–85.

[12]

Greco D.,
Su alcuni gruppi finiti che sono somma di cinque sottogruppi,
Rend. Semin. Mat. Univ. Padova 22 (1953), 313–333.

[13]

Greco D.,
Sui gruppi che sono somma di quattro o cinque sottogruppi,
Rend. Accad. Sci. Napoli 23 (1956), 49–56.

[14]

Haber S. and Rosenfeld A.,
Groups as unions of proper subgroups,
Amer. Math. Monthly 66 (1959), 491–494.

[15]

Holmes P. E.,
Subgroup coverings of some sporadic groups,
J. Combin. Theory Ser. A 113 (2006), 1204–1213.

[16]

Holmes P. E. and Maróti A.,
Pairwise generating and covering sporadic simple groups,
J. Algebra 324 (2010), 25–35.

[17]

Kappe L.-C. and Redden J. L.,
On the covering number of small alternating groups,
Computational Group Theory and the Theory of Groups. II,
Contemp. Math. 511,
American Mathematical Society, Providence (2010), 93–107.

[18]

Lucido M. S.,
On the covers of finite groups,
Groups St. Andrews 2001 in Oxford,
London Math. Soc. Lecture Note Ser. 305,
Cambridge University Press, Cambridge (2003), 395–399.

[19]

Maróti A.,
Covering the symmetric groups with proper subgroups,
J. Combin. Theory Ser. A 110 (2005), 97–111.

[20]

Neumann B. H.,
Groups covered by permutable subsets,
J. Lond Math. Soc. 29 (1954), 236–248.

[21]

Scorza G.,
I gruppi che possone pensarsi come somma di tre sottogruppi,
Boll. Unione Mat. Ital. 5 (1926), 216–218.

[22]

Serena L.,
On finite covers of groups by subgroups,
Advances in Group Theory 2002 (Napoli 2002),
Aracne, Rome (2003), 173–190.

[23]

Swartz E.,
On the covering number of symmetric groups having degree divisible by six,
Discrete Math. 339 (2016), no. 11, 2593–2604.

[24]

Tomkinson M. J.,
Groups as the union of proper subgroups,
Math. Scand. 81 (1997), 189–198.

[25]

The GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.4.7, 2006, http://www.gap-system.org.

[26]

Gurobi Optimizer Reference Manual, Gurobi Optimization, Inc., 2014, http://www.gurobi.com.

## Comments (0)