Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Groups Complexity Cryptology

Managing Editor: Shpilrain, Vladimir / Weil, Pascal

Editorial Board Member: Conder, Marston / Dehornoy, Patrick / Eick, Bettina / Fine, Benjamin / Gilman, Robert / Grigoriev, Dima / Ko, Ki Hyoung / Kreuzer, Martin / Mikhalev, Alexander V. / Myasnikov, Alexei / Perret, Ludovic / Roman'kov, Vitalii / Rosenberger, Gerhard / Sapir, Mark / Thomas, Rick / Tsaban, Boaz / Capell, Enric Ventura

2 Issues per year


CiteScore 2016: 0.35

SCImago Journal Rank (SJR) 2016: 0.372
Source Normalized Impact per Paper (SNIP) 2016: 0.517

Mathematical Citation Quotient (MCQ) 2016: 0.23

Online
ISSN
1869-6104
See all formats and pricing
More options …

Authenticated commutator key agreement protocol

Alexander Ushakov
Published Online: 2016-10-11 | DOI: https://doi.org/10.1515/gcc-2016-0011

Abstract

The original commutator key agreement (CKA) protocol is a two party anonymous key agreement protocol invented by I. Anshel, M. Anshel and D. Goldfeld. In this paper we propose a modification of the CKA protocol with mutual authentication without introducing any additional computational assumptions. In addition, we propose a new zero-knowledge Feige–Fiat–Shamir-type authentication protocol.

Keywords: Group-based cryptography; commutator key agreement; zero knowledge authentication

MSC 2010: 94A60; 68W30

References

  • [1]

    Anshel I., Anshel M. and Goldfeld D., An algebraic method for public-key cryptography, Math. Res. Lett. 6 (1999), no. 3–4, 287–291. Google Scholar

  • [2]

    Blackburn S., Cid C. and Mullan C., Group theory in cryptography, preprint 2010, http://arxiv.org/abs/0906.5545.

  • [3]

    Blake-Wilson S. and Menezes A., Authenticated diffie-hellman key agreement protocols, Proceedings of the Selected Areas in Cryptography, Lecture Notes in Comput. Sci. 1556, Springer, London (1998), 339–361. Google Scholar

  • [4]

    Boyd C. and Mathuria A., Protocols for Authentication and Key Establishment, Springer, Berlin, 2003. Google Scholar

  • [5]

    Chaturvedi A. and Lal L., An authenticated key agreement protocol using conjugacy problem in braid groups, Internat. J. Network Security 6 (2008), no. 2, 181–184. Google Scholar

  • [6]

    Chaturvedi A. and Shukla V., Tripartite key agreement protocol using conjugacy problem in braid groups, Int. J. Comput. Appl. 31 (2011), no. 1, 1–4. Google Scholar

  • [7]

    Chaturvedi A. and Sundar V., A secure key agreement protocol using braid groups, Int. J. Adv. Network. Appl. 1 (2010), no. 5, 327–330. Google Scholar

  • [8]

    Dehornoy P., Braid-based cryptography, Group Theory, Statistics, and Cryptography, Contemp. Math. 360, American Mathematical Society, Providence (2004), 5–33. Google Scholar

  • [9]

    Diffie W. and Hellman M. E., New directions in cryptography, IEEE Trans. Inform. Theory 22 (1976), 644–654. Google Scholar

  • [10]

    Dwivedi A. and Ojha D., A key agreement protocol using non-abelian group, Int. J. Adv. Network. Appl. 2 (2011), no. 4, 780–783. Google Scholar

  • [11]

    Feige U., Fiat A. and Shamir A., Zero knowledge proofs of identity, STOC ’87: Proceedings of the Nineteenth Annual ACM Conference on Theory of Computing, ACM, New York (1987), 210–217. Google Scholar

  • [12]

    Garber D., Kaplan S., Teicher M., Tsaban B. and Vishne U., Length-based conjugacy search in the braid group, Algebraic Methods in Cryptography, Contemp. Math. 418, American Mathematical Society, Providence (2006), 75–88. Google Scholar

  • [13]

    Goldreich O., Zero-knowledge twenty years after its invention, preprint 2002, http://www.wisdom.weizmann.ac.il/~oded/zk-tut02.html.

  • [14]

    Grigoriev D. and Shpilrain V., Authentication from matrix conjugation, Groups Complex. Cryptol. 1 (2009), 199–206. Google Scholar

  • [15]

    Grigoriev D. and Shpilrain V., Authentication schemes from actions on graphs, groups, or rings, Ann. Pure Appl. Logic 162 (2010), 194–200. Google Scholar

  • [16]

    Hofheinz D. and Steinwandt R., A practical attack on some braid group based cryptographic primitives, Advances in Cryptology – PKC 2003, Lecture Notes in Comput. Sci. 2567, Springer, Berlin (2003), 187–198. Google Scholar

  • [17]

    Hughes J. and Tannenbaum A., Length-based attacks for certain group based encryption rewriting systems, preprint 2003, http://front.math.ucdavis.edu/0306.6032.

  • [18]

    Ko K. H., Lee S. J., Cheon J. H., Han J. W., Kang J. and Park C., New public-key cryptosystem using braid groups, Advances in Cryptology – CRYPTO 2000, Lecture Notes in Comput. Sci. 1880, Springer, Berlin (2000), 166–183. Google Scholar

  • [19]

    Lee E. and Park J. H., Cryptanalysis of the public key encryption based on braid groups, Advances in Cryptology – EUROCRYPT 2003, Lecture Notes in Comput. Sci. 2656, Springer, Berlin (2003), 477–490. Google Scholar

  • [20]

    Lee H., Lee H.-S. and Lee Y.-R., An authenticated group key agreement protocol on braid groups, preprint 2003, http://eprint.iacr.org/2003/018.

  • [21]

    Lyndon R. and Schupp P., Combinatorial Group Theory, Classics Math., Springer, Berlin, 2001. Google Scholar

  • [22]

    Magnus W., Karrass A. and Solitar D., Combinatorial Group Theory, Springer, Berlin, 1977. Google Scholar

  • [23]

    Miasnikov A. G., Shpilrain V. and Ushakov A., A practical attack on some braid group based cryptographic protocols, Advances in Cryptology – CRYPTO 2005, Lecture Notes in Comput. Sci. 3621, Springer, Berlin (2005), 86–96. Google Scholar

  • [24]

    Miasnikov A. G., Shpilrain V. and Ushakov A., Random subgroups of braid groups: An approach to cryptanalysis of a braid group based cryptographic protocol, Advances in Cryptology – PKC 2006, Lecture Notes in Comput. Sci. 3958, Springer, Berlin (2006), 302–314. Google Scholar

  • [25]

    Miasnikov A. G., Shpilrain V. and Ushakov A., Group-Based Cryptography, Adv. Courses Math. CRM Barcelona, Birkhäuser, Basel, 2008. Google Scholar

  • [26]

    Miasnikov A. G., Shpilrain V. and Ushakov A., Non-Commutative Cryptography and Complexity of Group-Theoretic Problems, Math. Surveys Monogr. 177, American Mathematical Society, Providence, 2011. Google Scholar

  • [27]

    Miasnikov A. G. and Ushakov A., Random subgroups and analysis of the length-based and quotient attacks, J. Math. Crypt. 2 (2008), 29–61. Google Scholar

  • [28]

    Mosina N. and Ushakov A., Mean set attack: Cryptanalysis of Sibert et al. authentication protocol, J. Math. Crypt. 4 (2010), 149–174. Google Scholar

  • [29]

    Mosina N. and Ushakov A., Strong law of large numbers on graphs and groups, Groups Complex. Cryptol. 3 (2011), 67–103. Google Scholar

  • [30]

    Myasnikov A. D. and Ushakov A., Length based attack and braid groups: Cryptanalysis of Anshel–Anshel–Goldfeld key exchange protocol, Advances in Cryptology – PKC 2007, Lecture Notes in Comput. Sci. 4450, Springer, Berlin (2007), 76–88. Google Scholar

  • [31]

    Sakalauskas L., Tvarijonas P. and Raulynaitis A., Key agreement protocol (kap) using conjugacy and discrete logarithm problems in group representation level, Informatica 18 (2007), 115–124. Google Scholar

  • [32]

    Shpilrain V. and Ushakov A., Thompson’s group and public key cryptography, Applied Cryptography and Network Security – ACNS 2005, Lecture Notes in Comput. Sci. 3531, Springer, Berlin (2005), 151–164. Google Scholar

  • [33]

    Shpilrain V. and Ushakov A., A new key exchange protocol based on the decomposition problem, Algebraic Methods in Cryptography, Contemp. Math. 418, American Mathematical Society, Providence (2006), 161–167. Google Scholar

  • [34]

    Shpilrain V. and Ushakov A., The conjugacy search problem in public key cryptography: Unnecessary and insufficient, Appl. Algebra Engrg. Comm. Comput. 17 (2006), 285–289. Google Scholar

  • [35]

    Shpilrain V. and Ushakov A., An authentication scheme based on the twisted conjugacy problem, ACNS 2008, Lecture Notes in Comput. Sci. 5037, Springer, Berlin (2008), 366–372. Google Scholar

  • [36]

    Sibert H., Dehornoy P. and Girault M., Entity authentication schemes using braid word reduction, Discrete Appl. Math. 154 (2006), 420–436. Google Scholar

  • [37]

    Sidelnikov V. M., Cherepnev M. A. and Yaschenko V. Y., Systems of open distribution of keys on the basis of noncommutative semigroups, Russian Acad. Sci. Dokl. Math. 48 (1994), 384–386. Google Scholar

About the article

Received: 2016-02-18

Published Online: 2016-10-11

Published in Print: 2016-11-01


Funding Source: National Science Foundation

Award identifier / Grant number: DMS-1318716

This work was partially supported by NSF grant DMS-1318716.


Citation Information: Groups Complexity Cryptology, ISSN (Online) 1869-6104, ISSN (Print) 1867-1144, DOI: https://doi.org/10.1515/gcc-2016-0011.

Export Citation

© 2016 by De Gruyter. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in