[1]

Anshel I., Anshel M. and Goldfeld D.,
An algebraic method for public-key cryptography,
Math. Res. Lett. 6 (1999), 287–291.

[2]

Assmann B. and Linton S.,
Using the Mal’cev correspondence for collection in polycyclic groups,
J. Algebra 316 (2007), no. 2, 828–848.

[3]

Auslander L.,
The automorphism group of a polycyclic group,
Ann. of Math. (2) 89 (1969), 314–322.

[4]

Batty M., Rees S., Braunstein S. and Duncan A.,
Quantum algorithms in group theory,
Computational and Experimental Group Theory (Baltimore 2003),
Contemp. Math. 349,
American Mathematical Society, Providence (2004), 1–62.

[5]

Bogopolski O., Martino A. and Ventura E.,
Orbit decidability and the conjugacy problem for some extensions of groups,
Trans. Amer. Math. Soc. 362 (2010), no. 4, 2003–2036.

[6]

Bonanome M.,
Quantum algorithms in combinatorial group theory,
Ph.D. thesis, City University of New York, 2007.

[7]

Dehn M.,
Über unendliche diskontinuierliche Gruppen,
Math. Ann. 71 (1911), no. 1, 116–144.

[8]

du Sautoy M.,
Polycyclic groups, analytic groups and algebraic groups,
Proc. Lond. Math. Soc. (3) 85 (2002), no. 1, 62–92.

[9]

Eick B.,
When is the automorphism group of a virtually polycyclic group virtually polycyclic?,
Glasg. Math. J. 45 (2003), no. 3, 527–533.

[10]

Eick B. and Kahrobaei D.,
Polycyclic groups: A new platform for cryptography,
preprint 2004, http://arxiv.org/abs/math/0411077.

[11]

Eick B. and Ostheimer G.,
On the orbit-stabilizer problem for integral matrix actions of polycyclic groups,
Math. Comp. 72 (2003), no. 243, 1511–1529.

[12]

Fesenko A.,
Vulnerability of cryptographic primitives based on the power conjugacy search problem in quantum computing,
Cybernet. Systems Anal. 50 (2014), no. 5, 815–816.

[13]

Formanek E.,
Conjugate separability in polycyclic groups,
J. Algebra 42 (1976), no. 1, 1–10.

[14]

Garber D., Kahrobaei D. and Lam H. T.,
Length-based attack for polycyclic groups,
J. Math. Cryptol. 9 (2015), 33–44.

[15]

Garber D., Kaplan S., Teicher M., Tsaban B. and Vishne U.,
Length-based conjugacy search in the braid group,
Algebraic Methods in Cryptography (Bochum/Mainz 2005),
Contemp. Math. 418,
American Mathematical Society, Providence (2006), 75–87.

[16]

Gebhardt V.,
Efficient collection in infinite polycyclic groups,
J. Symbolic Comput. 34 (2002), no. 3, 213–228.

[17]

Grigoriev D. and Shpilrain V.,
Zero-knowledge authentication schemes from actions on graphs, groups, or rings,
Ann. Pure Appl. Logic 162 (2010), 194–200.

[18]

Habeeb M., Kahrobaei D. and Shpilrain V.,
A secret sharing scheme based on group presentations and the word problem,
Computational and Combinatorial Group Theory and Cryptography (Las Vegas/Ithaca 2011),
Contemp. Math. 582,
American Mathematical Society, Providence (2012), 143–150.

[19]

Hall P.,
The Edmonton Notes on Nilpotent Groups,
Queen Mary College Math. Notes,
Queen Mary College, London, 1969.

[20]

Holt D. F., Eick B. and O’Brien E. A.,
Handbook of Computational Group Theory,
Discrete Math. Appl. (Boca Raton),
Chapman & Hall/CRC, Boca Raton, 2005.

[21]

Hughes J. and Tannenbaum A.,
Length-based attacks for certain group based encryption rewriting systems,
preprint 2003, https://arxiv.org/abs/cs/0306032.

[22]

Ivanyos G., Sanselme L. and Santha M.,
An efficient quantum algorithm for the hidden subgroup problem in nil-2 groups,
LATIN 2008 – Theoretical Informatics (Buzios 2008),
Lecture Notes in Comput. Sci. 4957,
Springer, Berlin (2008), 759–771.

[23]

Kahrobaei D. and Khan B.,
Nis05-6: A non-commutative generalization of ElGamal key exchange using polycyclic groups,
IEEE Global Telecommunications Conference (GLOBECOM ’06),
IEEE Press, Piscataway (2006), 1–5.

[24]

Kahrobaei D. and Koupparis C.,
Non-commutative digital signatures using non-commutative groups,
Groups Complex. Cryptol. 4 (2012), 377–384.

[25]

Ko K. H., Lee S. J., Cheon J. H., Han J. W., Kang J. and Park C.,
New public-key cryptosystem using braid groups,
Advances in Cryptology (CRYPTO 2000),
Lecture Notes in Comput. Sci. 1880,
Springer, Berlin (2000), 166–183.

[26]

Kotov M. and Ushakov A.,
Analysis of a certain polycyclic-group-based cryptosystem,
J. Math. Cryptol. 9 (2015), no. 3, 161–167.

[27]

Leedham-Green C. R. and Soicher L. H.,
Collection from the left and other strategies,
J. Symbolic Comput. 9 (1990), no. 5–6, 665–675.

[28]

Lo E. and Ostheimer G.,
A practical algorithm for finding matrix representations for polycyclic groups,
J. Symbolic Comput. 28 (1999), no. 3, 339–360.

[29]

Mal’cev A.,
On homomorphisms onto finite groups,
Trans. Amer. Math. Soc. 119 (1983), 67–79.

[30]

Milnor J.,
Growth of finitely generated solvable groups,
J. Differential Geom. 2 (1968), no. 4, 447–449.

[31]

Myasnikov A. D. and Ushakov A.,
Length-based attack and braid groups: Cryptanalysis of Anshel–Anshel–Goldfeld key-exchange protocol,
Public Key Cryptography – PKC 2007 (Beijing 2007),
Lecture Notes in Comput. Sci. 4450,
Springer, Berlin (2007), 76–88.

[32]

Myasnikov A. G. and Roman’kov V.,
A linear decomposition attack,
Groups Complex. Cryptol. 7 (2015), no. 1, 81–94.

[33]

Myasnikov A. G., Shpilrain V., Ushakov A. and Mosina N.,
Non-Commutative Cryptography and Complexity of Group-Theoretic Problems,
Math. Surveys Monogr. 177,
American Mathematical Society, Providence, 2011.

[34]

Myasnikov A. G. and Ushakov A.,
Random subgroups and analysis of the length-based and quotient attacks,
J. Math. Cryptol. 2 (2008), no. 1, 29–61.

[35]

Nickel W.,
Matrix representations for torsion-free nilpotent groups by Deep Thought,
J. Algebra 300 (2006), no. 1, 376–383.

[36]

Remeslennikov V.,
Conjugacy in polycyclic groups,
Algebra Logic 8 (1969), no. 6, 404–411.

[37]

Roman’kov V.,
The twisted conjugacy problem for endomorphisms of polycyclic groups,
J. Group Theory 13 (2010), no. 3, 355–364.

[38]

Segal D.,
Decidable properties of polycyclic groups,
Proc. Lond. Math. Soc. (3) 61 (1990), no. 3, 61–497.

[39]

Shor P.,
Algorithms for quantum computation: Discrete logarithms and factoring,
35th Annual Symposium on Foundations of Computer Science,
IEEE Press, Piscataway (1994), 124–134.

[40]

Shpilrain V.,
Search and witness problems in group theory,
Groups Complex. Cryptol. 2 (2010), no. 2, 231–246.

[41]

Shpilrain V. and Ushakov A.,
The conjugacy search problem in public key cryptography: Unnecessary and insufficient,
Appl. Algebra Engrg. Comm. Comput. 17 (2006), no. 3–4, 285–289.

[42]

Shpilrain V. and Ushakov A.,
An authentication scheme based on the twisted conjugacy problem,
Applied Cryptography and Network Security,
Lecture Notes in Comput. Sci. 5037,
Springer, Berlin (2008), 366–372.

[43]

Shpilrain V. and Zapata G.,
Using the subgroup membership search problem in public key cryptography,
Algebraic Methods in Cryptography (Bochum/Mainz 2005),
Contemp. Math. 418,
American Mathematical Society, Providence (2006), 169–178.

[44]

Tsaban B.,
Polynomial-time solutions of computational problems in noncommutative-algebraic cryptography,
J. Cryptology 28 (2015), 601–622.

[45]

Wehrfritz B.,
Two remarks on polycyclic groups,
Bull. Lond. Math. Soc. 26 (1994), no. 6, 543–548.

[46]

Wolf J.,
Growth of finitely generated solvable groups and curvature of Riemannian manifolds,
J. Differential Geom. 2 (1968), 421–446.

## Comments (0)