[1]

A. K. Asboei,
Characterization of projective general linear groups,
Int. J. Group Theory 5 (2016), no. 1, 17–28.
Google Scholar

[2]

A. K. Asboei and S. S. S. Amiri,
A new characterization of $\mathrm{PSL}(2,25)$,
Int. J. Group Theory 1 (2012), no. 3, 15–19.
Google Scholar

[3]

A. K. Asboei, S. S. S. Amiri, A. Iranmanesh and A. Tehranian,
A characterization of symmetric group ${S}_{r}$, where *r* is prime number,
Ann. Math. Inform. 40 (2012), 13–23.
Google Scholar

[4]

A. K. Asboei, S. S. S. Amiri, A. Iranmanesh and A. Tehranian,
A characterization of sporadic simple groups by nse and order,
J. Algebra Appl. 12 (2013), no. 2, Article ID 1250158.
Web of ScienceGoogle Scholar

[5]

A. K. Asboei, S. S. S. Amiri, A. Iranmanesh and A. Tehranian,
A new characterization of ${A}_{7}$ and ${A}_{8}$,
An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 21 (2013), no. 3, 43–50.
Google Scholar

[6]

A. K. Asboei and A. Iranmanesh,
A characterization of the linear groups ${L}_{2}(p)$,
Czechoslovak Math. J. 64(139) (2014), no. 2, 459–464.
Web of ScienceGoogle Scholar

[7]

G. Chen,
A new characterization of sporadic simple groups,
Algebra Colloq. 3 (1996), no. 1, 49–58.
Google Scholar

[8]

G. Chen,
On Thompson’s conjecture,
J. Algebra 185 (1996), no. 1, 184–193.
CrossrefGoogle Scholar

[9]

G. Y. Chen,
On structure of Frobenius and 2-Frobenius group (in Chinese),
J. Southwest China Normal Univ. 20 (1995), no. 5, 485–487.
Google Scholar

[10]

J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson,
Atlas of Finite Groups,
Oxford University Press, Eynsham, 1985.
Google Scholar

[11]

G. Frobenius,
Verallgemeinerung des Sylowschen Satzes,
Berl. Ber. 1985 (1895), 981–993.
Google Scholar

[12]

D. Gorenstein,
Finite Groups, 2nd ed.,
Harper and Row, New York, 1980.
Google Scholar

[13]

B. Huppert,
Endliche Gruppen. I,
Grundlehren Math. Wiss. 134,
Springer, Berlin, 1967.
Google Scholar

[14]

N. Iiyori and H. Yamaki,
Prime graph components of the simple groups of Lie type over the field of even characteristic,
J. Algebra 155 (1993), no. 2, 335–343.
CrossrefGoogle Scholar

[15]

O. H. King,
The subgroup structure of finite classical groups in terms of geometric configurations,
Surveys in Combinatorics 2005,
London Math. Soc. Lecture Note Ser. 327,
Cambridge University Press, Cambridge (2005), 29–56.
Google Scholar

[16]

A. S. Kondrat’ev,
On prime graph components of finite simple groups,
Mat. Sb. 180 (1989), no. 6, 787–797, 864.
Google Scholar

[17]

V. D. Mazurov,
On infinite groups with abelian centralizers of involution,
Algebra Logic 39 (2000), no. 1, 74–86, 121.
Google Scholar

[18]

V. D. Mazurov and E. I. Khukhro,
The Kourovka Notebook. Unsolved Problems in Group Theory, Including Archive of Solved Problems, sixteenth ed.,
Russian Academy of Sciences Siberian Division, Novosibirsk, 2006.
Google Scholar

[19]

C. Shao, W. Shi and Q. Jiang,
Characterization of simple ${K}_{4}$-groups,
Front. Math. China 3 (2008), no. 3, 355–370.
Web of ScienceGoogle Scholar

[20]

R. Shen, C. Shao, Q. Jiang, W. Shi and V. Mazurov,
A new characterization of ${A}_{5}$,
Monatsh. Math. 160 (2010), no. 3, 337–341.
Google Scholar

[21]

W. J. Shi,
A new characterization of the sporadic simple groups,
Group Theory (Singapore 1987),
De Gruyter, Berlin (1989), 531–540.
Google Scholar

[22]

L. Weisner,
On the number of elements of a group which have a power in a given conjugate set,
Bull. Amer. Math. Soc. 31 (1925), no. 9–10, 492–496.
CrossrefGoogle Scholar

[23]

J. S. Williams,
Prime graph components of finite groups,
J. Algebra 69 (1981), no. 2, 487–513.
CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.