Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year

IMPACT FACTOR 2017: 0.696
5-year IMPACT FACTOR: 0.736

CiteScore 2017: 0.89

SCImago Journal Rank (SJR) 2017: 0.323
Source Normalized Impact per Paper (SNIP) 2017: 0.674

Open Access
See all formats and pricing
More options …

Expanding the Cenozoic paleoceanographic record in the Central Arctic Ocean: IODP Expedition 302 Synthesis

Jan Backman / Kathryn Moran
  • Graduate School of Oceanography and Department of Ocean Engineering, University of Rhode Island, 02882-1197, R.I., U.S.A.
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2009-06-01 | DOI: https://doi.org/10.2478/v10085-009-0015-6


The Arctic Coring Expedition (ACEX) proved to be one of the most transformational missions in almost 40 year of scientific ocean drilling. ACEX recovered the first Cenozoic sedimentary sequence from the Arctic Ocean and extended earlier piston core records from ≈1.5 Ma back to ≈56 Ma. The results have had a major impact in paleoceanography even though the recovered sediments represents only 29% of Cenozoic time. The missing time intervals were primarily the result of two unexpected hiatuses. This important Cenozoic paleoceanographic record was reconstructed from a total of 339 m sediments. The wide range of analyses conducted on the recovered material, along with studies that integrated regional tectonics and geophysical data, produced surprising results including high Arctic Ocean surface water temperatures and a hydrologically active climate during the Paleocene Eocene Thermal Maximum (PETM), the occurrence of a fresher water Arctic in the Eocene, ice-rafted debris as old as middle Eocene, a middle Eocene environment rife with organic carbon, and ventilation of the Arctic Ocean to the North Atlantic through the Fram Strait near the early-middle Miocene boundary. Taken together, these results have transformed our view of the Cenozoic Arctic Ocean and its role in the Earth climate system.

Keywords: ocean drilling; Lomonosov Ridge; Cenozoic paleoceanography; Arctic tectonics

  • [1] Jakobsson M., Hypsometry and volume of the Arctic Ocean and its constituent seas, Geochem. Geophy. Geosy., 2002, 3, 1–18 http://dx.doi.org/10.1029/2001GC000302CrossrefGoogle Scholar

  • [2] Green A.R., Kaplan A.A., Vierbuchen R.C., Circum-Arctic petroleum potential, American Association of Petroleum Geologists Memoirs, 1986, 40, 101–129 Google Scholar

  • [3] Lawver L.A., Scotese C.R., A review of tectonic models for the evolution of the Canada Basin. In: Grantz A., Johnson L., Sweeney J.F. (Eds.), The Arctic Ocean Region, The Geology of North America v. L, 1990 Google Scholar

  • [4] Thiede J., The Arctic Ocean record: Key to global change, Polarforschung, 1991, 61, 1–102 Google Scholar

  • [5] Aagaard K., Carmack E.C., The Arctic Ocean and climate: a perspective. In: Johannessen O.M., Muen-sch R.D., Overland J.E. (Eds.), The Polar Oceans and Their Role in Shaping the Global Environment, AGU Geophysics Monograph Series, 85, 1994 Google Scholar

  • [6] Driscoll N.W., Haug G.H., A short circuit in thermohaline circulation: Acause for Northern Hemisphere glaciation? Science, 1998, 282, 436–438 http://dx.doi.org/10.1126/science.282.5388.436CrossrefGoogle Scholar

  • [7] Grantz A., Clark D.L., Phillips R.L., Srivastava S.P., Phanerozoic stratigraphy of the Northwind Ridge, magnetic anomalies in the Canada basin, and the geometry and timing ofrifting in the Amerasia basin, Arctic Ocean, Geol. Soc. Am. Bull., 1998, 110, 801–820 http://dx.doi.org/10.1130/0016-7606(1998)110<0801:PSONRM>2.3.CO;2CrossrefGoogle Scholar

  • [8] Kristoffersen Y., Mikkelsen N. (Eds.), Scientific drilling in the Arctic Ocean and the site survey challenge: Tectonic, paleoceanographic and climatic evolution of the Polar Basin, Geological Survey of Denmark and Greenland, Special publication, 2004 Google Scholar

  • [9] Gradstein F.M., Introduction. In: Gradstein F.M., Ogg J.G., Smith A.G. (Eds.), A Geologic Time Scale 2004, Cambridge University Press, 2004 Google Scholar

  • [10] Vogt P.R., Taylor P.T., Kovacs L.C., Johnson G.L., Detailed aeromagnetic investigation of the Arctic Basin, J. Geophys. Res., 1979, 84, 1071–1089 http://dx.doi.org/10.1029/JB084iB03p01071CrossrefGoogle Scholar

  • [11] Lawver L.A., Müller R.D., Srivastava S.P., Roest W., The opening of the Arctic Ocean. In: Bleil U., Thiede J. (Eds.), Geological history ofthe polar oceans: Arctic versus Antarctic, NATO ASI Series 308, 1990 Google Scholar

  • [12] Kristoffersen Y., Eurasia Basin. In: Grantz A., Johnson L., Sweeney J.F. (Eds.), The Arctic Ocean Region, The Geology of North America v. L, 1990 Google Scholar

  • [13] Jokat W., Uenzelmann-Neben G., Kristoffersen Y., Rasmussen T., ARCTIC’91: Lomonosov Ridge —a double sided continental margin, Geology, 1992, 20, 887–890 http://dx.doi.org/10.1130/0091-7613(1992)020<0887:LRADSC>2.3.CO;2CrossrefGoogle Scholar

  • [14] Brozena J.M., Childers V.A., Lawver L.A., Gahagan L.M., Forsberg R., Faleide J.L. et al., New aerogeophysical study of the Eurasia Basin and Lomonosov Ridge: Implications for basin development, Geology, 2003, 31, 825–828 http://dx.doi.org/10.1130/G19528.1CrossrefGoogle Scholar

  • [15] Jackson H.R., Oakey G.N., Sedimentary thickness map of the Arctic Ocean. In: Grantz A., Johnson L., Sweeney J.F. (Eds.), The Arctic Ocean Region, The Geology of North America v. L, Plate 5, 1990 Google Scholar

  • [16] Fütterer D.K., Arctic ’91: The expedition ARK VIII/3 of RV “Polarstern” in 1991, Ber. z. Polarfors., 1992, 107, 1–267 Google Scholar

  • [17] Jokat W., Weigelt E., Kristoffersen Y., Rasmussen T., Schöne T., New insights into the evolution of the Lomonosov Ridge and the Eurasian Basin, Geophys. J. Int., 1995, 122, 378–392 Google Scholar

  • [18] Moran K., Backman J., Farrell J., Deepwater drilling in the Arctic Ocean’s permanent sea ice. In: Backman J., Moran K., McInroy D., Mayer L.A. (Eds.), IODP Expedition Reports 302 (Texas A6M University, College Station, TX), 2006, DOI:10.2204/iodp.proc.302.106.2006 Google Scholar

  • [19] Backman J., Moran K., McInroy D.B., Mayer L.A., Proc. IODP 302, Edinburgh (Integrated Ocean Drilling Program Management International, Inc.), 2006, DOI:10.2204/iodp.proc.302.2006 CrossrefGoogle Scholar

  • [20] Ewing M., Worzel J.L., Init. Repts. DSDP 1, Washington, U.S. Govt. Printing Office, 1969 Google Scholar

  • [21] Emiliani, C., A new global geology. In: Emiliani, C. (Ed.), The Sea, 7, The Oceanic Lithosphere, Wiley-Interscience, 1981. Google Scholar

  • [22] Hay W.W., Paleoceanography: A review for the GSA Centennial, Geol. Soc. Am. Bull., 1988, 100, 1934–1956 http://dx.doi.org/10.1130/0016-7606(1988)100<1934:PARFTG>2.3.CO;2CrossrefGoogle Scholar

  • [23] Backman J., Jakobsson M., Løvlie R., Polyak L., Febo L.A., Is the central Arctic Ocean a sediment starved basin? Quaternary. Sci. Rev., 2004, 23, 1435–1454 http://dx.doi.org/10.1016/j.quascirev.2003.12.005CrossrefGoogle Scholar

  • [24] Clark D.L., Late Mesozoic and early Cenozoic sediment cores from the Arctic Ocean, Geology, 1974, 2, 41–44 http://dx.doi.org/10.1130/0091-7613(1974)2<41:LMAECS>2.0.CO;2CrossrefGoogle Scholar

  • [25] Bukry D., Paleogene paleoceanography of the Arctic Ocean is constrained by the middle or late Eocene age of USGS Core FI-422: Evidence from silicoflagellates, Geology, 1984, 12, 199–201 http://dx.doi.org/10.1130/0091-7613(1984)12<199:PPOTAO>2.0.CO;2CrossrefGoogle Scholar

  • [26] Ling H.Y., Early Paleogene silicoflagellates and ebridians from the Arctic Ocean, Transactions Proceedings Paleontological Society of Japan, 1985, 138, 79–93 Google Scholar

  • [27] Thiede J., Myhre A.M., The paleoceanographic history of the North Atlantic-Arctic gateways: Synthesis of the Leg 151 drilling results. In: Thiede J., Myhre A.M., First J.V., Johnson G.L., Ruddiman W.F. (Eds.), Proc. ODP, Sci. Res., 151: College Station, TX (Ocean Drilling Program), 1996 Google Scholar

  • [28] Stigebrandt A., A model for the thickness and salinity of the upper layer in the Arctic Ocean and the relationship between the ice thickness and some external parameters, J. Phys. Oceanogr., 1981, 11, 1407–1422 http://dx.doi.org/10.1175/1520-0485(1981)011<1407:AMFTTA>2.0.CO;2CrossrefGoogle Scholar

  • [29] Eldholm O., Skogseid J., Sundvor E., Myhre A.M., The Norwegian-Greenland Sea. In: Grantz A., Johnson L., Sweeney J.F. (Eds.), The Arctic Ocean Region, The Geology of North America, L, 1990 Google Scholar

  • [30] Kristoffersen Y., On the tectonic evolution and paleoceanographic significance of the Fram Strait. In: Bleil U., Thiede J. (Eds.), Geological history of the polar oceans: Arctic versus Antarctic, NATO ASI Series, 308, 1990 Google Scholar

  • [31] Marincovitch L. Jr., Brouwers E.M., Hopkins D.M., McKenna M.C., Late Mesozoic and Cenozoic paleogeographic and paleoclimatic history of the Arctic Ocean Basin, based on shallow-water marine faunas and terrestrial vertebrates. In: Grantz A., Johns L., Sweeney J.F. (Eds.), The Arctic Ocean Region, The Geology of North America v. L, 1990 Google Scholar

  • [32] Einarsson T., Hopkins D.M., Doell R.R., The stratigraphy of Tjörnes, northern Iceland, and the history of the Bering land bridge. In: Hopkins D.M. (Ed.), The Bering Land Bridge, Stanford University Press, 1967 Google Scholar

  • [33] Funder S., Abrahamsen N., Bennike O., Feyling-Hansen R.W., Forested Arctic: Evidence from North Greenland, Geology, 1985, 13, 542–546 http://dx.doi.org/10.1130/0091-7613(1985)13<542:FAEFNG>2.0.CO;2CrossrefGoogle Scholar

  • [34] Vink G.E., Morgan W.J., Zhao W.-L., Preferential rifting of continents: a source of displaced terranes, J. Geophys. Res., 1984, 89, 10072–10076 http://dx.doi.org/10.1029/JB089iB12p10072CrossrefGoogle Scholar

  • [35] Lavier L., Steckler M., The effect of sedimentary cover on the flexural strength of continental lithosphere, Nature, 1997, 389, 476–479 http://dx.doi.org/10.1038/39004CrossrefGoogle Scholar

  • [36] Kerr R.A., Signs of a warm, ice-free Arctic, Science, 2004, 305, 1693 http://dx.doi.org/10.1126/science.305.5691.1693aCrossrefGoogle Scholar

  • [37] A. Revkin, Under all that ice, maybe oil, New York Times Science Times, 30 November 2006 Google Scholar

  • [38] T. Apenzeller, Great green north: was the ice Arctic once a warm soup of life?, National Geographic Magazine, May 2005 Google Scholar

  • [39] M. Sever, From hot to cold in the Arctic, Geotimes, August 2006 Google Scholar

  • [40] Backman, J., Moran, K., McInroy, D., IODP Expedition 302, Arctic Coring Expedition (ACEX): A first look at the Cenozoic paleoceanography of the central Arctic Ocean, Scientific Drilling, 2005, 1, 12–17 Google Scholar

  • [41] Moran K., Backman J., Brinkhuis H., Clemens S., Cronin T., Dickens G., et al., The Cenozoic palaeoenvironment of the Arctic Ocean, Nature, 2006, 441, 601–605, DOI:10.1038/nature04800 http://dx.doi.org/10.1038/nature04800CrossrefGoogle Scholar

  • [42] Brinkhuis H., Schouten S., Collinson M.E., Sluijs A., Sinninghe Damsté J.S., Dickens G.R. et al., IODP Expedition 302 Scientists, Episodic fresh surface waters in the Eocene Arctic Ocean, Nature, 2006, 441, 606–609, DOI:10.1038/nature0492 http://dx.doi.org/10.1038/nature04692CrossrefGoogle Scholar

  • [43] Sluijs A., Schouten S., Pagani M., Woltering M., Brinkhuis H., Sinninghe Damsté J.S. et al., IODP Expedition 302 Scientists, Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum, Nature, 2006, 441, 610–613, DOI:10.1038/nature04668 http://dx.doi.org/10.1038/nature04668CrossrefGoogle Scholar

  • [44] Pagani M., Pendentchouk N., Huber M., Sluijs A., Schouten S., Brinkhuis H. et al., IODP Expedition 302 Scientists, The Arctic’s hydrological response to global warming during the Paleocene-Eocene thermal maximum, Nature, 2006, 442, 671–675, DOI:10.1038/nature05043 http://dx.doi.org/10.1038/nature05043CrossrefGoogle Scholar

  • [45] Jakobsson M., Cherkis N., Woodward J., Coakley B., Macnab R., A new grid of Arctic bathymetry: A significant resource for scientists and mapmakers, American Geophysical Union EOS Transactions, 2000, 8, 89–96 http://dx.doi.org/10.1029/00EO00059CrossrefGoogle Scholar

  • [46] Jakobsson M., Backman J., Rudels B., Nycander J., Frank M., Mayer L. et al., The early Miocene onset of a ventilated circulation regimen in the Arctic Ocean, Nature, 2007, 447, 986–990, DOI:10.1038/nature05924 http://dx.doi.org/10.1038/nature05924CrossrefGoogle Scholar

  • [47] Stein R., Boucsein B., Meyer H., Anoxia and high primary production in the Paleogene central Arctic Ocean: First detailed records from the Lomonosov Ridge, Geophys. Res. Lett., 2006, 33, 1–6, DOI:10.1029/2006GL026776 http://dx.doi.org/10.1029/2006GL026776CrossrefGoogle Scholar

  • [48] Stein R., Upper Cretaceous/lower Tertiary black shales near the North Pole: Organiccarbon origin and source-rock potential, Mar. Petrol. Geol., 2007, 24, 67–73, DOI:1016/j.marpetgeo.2006.10.002 http://dx.doi.org/10.1016/j.marpetgeo.2006.10.002Google Scholar

  • [49] Dickens G.R., Koelling M., Smith D.C., Schneiders L., IODP Expedition 302 Scientists, Rhizon sampling of pore waters on scientific drilling expeditions: An example from the IODP Expedition 302, Arctic Coring Expedition (ACEX), Scientific Drilling, 2007, 4, 22–25 Google Scholar

  • [50] Haley B.A., Frank M., Spielhagen R.F., Eisenhauer A., Influence of brine formation on Arctic Ocean circulation over the past 15 million years, Nature Geoscience, 2008, 1, 68–72 http://dx.doi.org/10.1038/ngeo.2007.5CrossrefGoogle Scholar

  • [51] Cronin T., Smith S.A., Eynaud F., O’Regan M., King J., Quaternary paleoceanography of the central Arctic based on Integrated Ocean Drilling Program Arctic Coring Expedition 302 foraminiferal assemblages, Paleoceanography, 2008, 23, 1–14, PA1S18, DOI:10.1029/2007PA001484 http://dx.doi.org/10.1029/2007PA001484CrossrefGoogle Scholar

  • [52] Eynaud F., Cronin T.M., Smith S., Zaragosi S., Mavel J., Mary Y., Mas V. et al., Morphological variability of the planktonic foraminifer Neogloboquadrina pachyderma in the late Pleistocene of the ACEX cores, Micropaleontology (in press) Google Scholar

  • [53] O’Regan M., King J., Backman J., Jakobsson M., Pälike H., Moran K. et al., Constraints on the Pleistocene chronology of sediments from the Lomonosov Ridge, Paleoceanography, 2008, 23, 1–18, PA1S19, DOI:10.1029/2007PA001551 CrossrefGoogle Scholar

  • [54] Frank M., Backman J., Jakobsson M., Moran K. O’Regan M., King J. et al., Beryllium isotopes in central Arctic Ocean sediments over the past 12.3 million years: Stratigraphic and paleoclimatic implications, Paleoceanography, 2008, 23, 1–12, PA1S02, DOI:10.1029/2007PA001478 http://dx.doi.org/10.1029/2007PA001478Google Scholar

  • [55] Onadera J., Takahashi K., Jordan R.W., Eocene silicoflagellate and ebridian paleoceanography in the central Arctic Ocean, Paleoceanography, 2008, 23, 1–9, PA1S15, DOI:10.1029/2007PA001474 CrossrefGoogle Scholar

  • [56] Matthiessen J., Brinkhuis H., Poulsen N., Smelror M., Decahedrella martinheadii —a stratigraphic and paleoenvironmental acritarch indicator species for the high northern latitude late Miocene, Micropaleontology (in press) Google Scholar

  • [57] Sangiorgi F., Brinkhuis H., Damassa S.P., Arcticacysta: A new organic-walled dinoflagellate cyst genus from the early Miocene? of the central Arctic Ocean, Micropaleontology (in press) Google Scholar

  • [58] Sluijs A., Röhl U., Schouten S., Brumsack H.-J., Sangiorgi F., Sinninghe Damsté J.S. et al., Arctic late Paleocene-early Eocene paleoenvironments with special emphasis on the Paleocene-Eocene thermal maximum (Lomonosov Ridge, Integrated Ocean Drilling Program Expedition 302), Paleoceanography, 2008, 23, 1–17, PA1S11, DOI:10.1029/2007PA001495 CrossrefGoogle Scholar

  • [59] Suto I., Jordan R.W., Watanabe M., Taxonomy offossil marine diatom resting spore genus Goniotechium Ehrenberg and its allied species, Diatom Res., 2008, 23, 445–469 CrossrefGoogle Scholar

  • [60] Suto I., Jordan R.W., Watanabe M., Taxonomy ofmiddle Eocene diatom resting spores and their allied taxa from IODP sites in the central Arctic Ocean (Lomonosov Ridge), Micropaleontology (in press) Google Scholar

  • [61] Suto I., Watanabe M., Jordan R.W., Taxonomy of the fossil marine diatom resting spore genus Odontotropis Grunow, Diatom Res. (in press) Google Scholar

  • [62] Onadera J., Takahashi K., Middle Eocene ebridians in the central Arctic Ocean, IODP Expedition 302 (ACEX), Micropaleontology (in press) Google Scholar

  • [63] Onadera J., Takahashi K., Taxonomy and biostratigraphy of silicoflagellates in the middle Eocene Arctic Ocean, Micropaleontology (in press) Google Scholar

  • [64] Stickley C.E., Koç N., Brumsack H.-J., Jordan R.W., Suto I., A siliceous microfossil view of middle Eocene Arctic paleoenvironments: A window of biosilica production and preservation, Paleoceanograhy, 2008, 23, 1–19, PA1S14, DOI:10.1029/2007PA001485 CrossrefGoogle Scholar

  • [65] Backman J., Jakobsson M., Frank M., Sangiorgi F., Brinkhuis H., Stickley C. et al., Age model and core-seismic integration for the Cenozoic Arctic Coring Expedition sediments from the Lomonosov Ridge, Paleoceanography, 2008, 23, 1–15, PA1S03, DOI:10.1029/2007PA001476 CrossrefGoogle Scholar

  • [66] O’Regan M., Sakamoto T., King J., Data report: regional stratigraphic correlation and a revised composite depth scale for IODP Expedition 302. In: Backman, J., Moran, K., McInroy, D., Mayer, L.A. (Eds.), Proc. IODP, 302 (Texas A6M University, College Station, TX), 2008 Google Scholar

  • [67] Spielhagen R.F., Baumann K.-H., Erlenkeuser H., Nowaczyk N.R., Nørgaard-Pedersen N., Vogt C. et al., Arctic Ocean deep-sea record of northern Eurasian ice sheet history, Quaternary Sci. Rev., 2004, 23, 1455–1483 http://dx.doi.org/10.1016/j.quascirev.2003.12.015CrossrefGoogle Scholar

  • [68] Steuerwald B.A., Clark D.L., Andrew, J.A., Magnetic stratigraphy and faunal patterns in Arctic Ocean sediments, Earth Planet. Sci. Lett., 1968, 5, 79–85 http://dx.doi.org/10.1016/S0012-821X(68)80018-4CrossrefGoogle Scholar

  • [69] Clark D.L., Whitman R.R., Morgan K.A., Mackay S.D., Stratigraphy and glacial-marine sediments of the Amerasian Basin, central Arctic Ocean, Geological Society of America Special Paper, 1980, 181, 1–57 Google Scholar

  • [70] Clark D.L., Kowallis B.J., Medaris L.G., Deino A.L., Orphan Arctic Ocean metasediment clast: Local derivation from Alpha Ridge pre-2.6 Ma ice rafting? Geology, 2000, 28, 1143–1146 or[71] Lourens L.J., Hilgen F.J., Shackleton N.J., Laskar J., Wilson D., The Neogene Period. In: Gradstein F.M., Ogg J.G., Smith A.G. (Eds.), A Geologic Time Scale 2004, Cambridge University Press, 2004 http://dx.doi.org/10.1130/0091-7613(2000)28<1143:OAOMCL>2.0.CO;2CrossrefGoogle Scholar

  • [71] Pälike H., Spofforth D.J.A., O’Regan M., Gattacecca J., Orbital scale variations and timescales from the Arctic Ocean. Paleoceanography, 2008, 23, 1–13, PA1S10, DOI:10.1029/2007PA001490 http://dx.doi.org/10.1029/2007PA001490CrossrefGoogle Scholar

  • [72] Whitmarsh R.B., Manatschal G., Minshull T.A., Evolution of magma-poor continental margins from rifting to seafloor spreading, Nature, 2001, 413, 150–154 http://dx.doi.org/10.1038/35093085CrossrefGoogle Scholar

  • [73] Doré A.G., The structural foundation and evolution of Mesozoic seaways between Europe and Arctic, Palaeogeogr. Palaeocl., 1991, 87, 441–492 http://dx.doi.org/10.1016/0031-0182(91)90144-GCrossrefGoogle Scholar

  • [74] Dibner V.D., Geology of Franz Josef Land —An introduction, Norsk Polarinstitutt, 1998, 151, 10–17 Google Scholar

  • [75] Dypvik H., Kokolov A., Pcelina T., Fjellsa B., Bjærke, T., Korchinskaja M., Nagy J., The Triassic succession of Franz Josef Land, stratigraphy and sedimentology of three wells from Alexandra, Hayes and Graham Bell Islands, Norsk Polarinstitutt Meddelelser, 1998, 151, 51–82 Google Scholar

  • [76] Sangiorgi F., Brumsack H.-J., Willard D.A., Schouten S., Stickley C., O’Regan M. et al., A 26 million year gap in the central Arctic record at the greenhouse-icehouse transition: Looking for clues, Paleoceanography, 2008, 23, 1–13, PA1S04, DOI:10.1029/2007PA001477 CrossrefGoogle Scholar

  • [77] Moore T.C., Expedition 302 Scientists, Sedimentation and subsidence history of the Lomonosov Ridge. In: Backman J., Moran K., McInroy D.B., Mayer L.A. (Eds.), Proc. IODP 302: Edinburgh (Integrated Ocean Drilling Program Management International, Inc.), 2006, DOI:10.2204/iodp.proc.302.105.2006 CrossrefGoogle Scholar

  • [78] O’Regan M., Moran K., Backman J., Jakobsson M., Sangiorgi F., Brinkhuis H. et al., Mid-Cenozoic tectonic and paleoenvironmental setting of the central Arctic Ocean, Paleoceanogr., 2008, 23, 1–15, PA1S20, DOI:10.1029/2007PA001559 CrossrefGoogle Scholar

  • [79] Parsons B., Sclater J.G., An analysis ofthe variation of ocean floor bathymetry and heat flow with age, J. Geophys. Res., 1977, 82, 803–827 http://dx.doi.org/10.1029/JB082i005p00803CrossrefGoogle Scholar

  • [80] Lawver L.A., Grantz A., Gahagan L.M., Plate kinematic evolution of the present Arctic region since the Ordovician. In: Miller E.L., Grantz A., Klemperer S.L., (Eds.), Tectonic evolution of the Bering Shelf-Chukchi Sea-Arctic margin and adjacent landmasses, Geological Society of America Special Paper, 2002, 360, 333–358 Google Scholar

  • [81] Drachev S.S., Savostin L.A., Groshev V.G., Bruni I.E., Structure and geology of the continental shelf of the Laptev Sea, eastern Russian Arctic, Tectonophysics, 1998, 298, 357–393 http://dx.doi.org/10.1016/S0040-1951(98)00159-0CrossrefGoogle Scholar

  • [82] Drachev S.S., Kaul N., Beliaev V.N., Eurasia spreading to Laptev shelf transition: structural pattern and heat flow, Geophys. J. Int., 2003, 152, 688–698 http://dx.doi.org/10.1046/j.1365-246X.2003.01882.xCrossrefGoogle Scholar

  • [83] Weigelt E., Jokat W., Pecularities of roughness and thickness of oceanic crust in the Eurasian Basin, Arctic Ocean, Geophys. J. Int., 2001, 145, 505–516 Google Scholar

  • [84] Gleason J.D., Thomas D.J., Moore T.C. Jr., Blum J.D., Haley B.A., Water column structure of the Eocene Arctic Ocean from Nd-Sr isotope proxies in fossil fish debris, Geochim. Cosmochim. Ac, 2007, 71, A329-A329 Google Scholar

  • [85] Waddell L.M., Moore T.C., Salinity of the Eocene Arctic Ocean from oxygen isotope analysis of fish bone carbonate, Paleoceanographys, 2008, 23, 1–14, PA1S12, DOI:10.1029/2007PA001451 CrossrefGoogle Scholar

  • [86] Knies J., Mann U., Popp B.N., Stein R., Brumsack H.-J., Surface water productivity and paleoceanographic implications in the Cenozoic Arctic Ocean, Paleoceanography 2008, 23, 1–12, PA1S16, DOI:10.1029/2007PA001455 http://dx.doi.org/10.1029/2007PA001455CrossrefGoogle Scholar

  • [87] Sangiorgi F., van Soelen E.E., Spofforth D.A.J., Pälike H., Stickley C., St. John K. et al., Cyclicity in the middle Eocene central Arctic Ocean sediment record: Orbital forcing and environmental response, Paleoceanography, 2008, 23, 1–14, PA1S08, DOI:10.1029/2007PA001487 CrossrefGoogle Scholar

  • [88] Spofforth D.J.A., Pälike H., Green D., Paleogene record of elemental concentrations from the Arctic Ocean obtained by XRF analyses, Paleoceanography, 2008, 23, 1–13, PA1S09, DOI:10.1029/2007PA001489 http://dx.doi.org/10.1029/2007PA001489CrossrefGoogle Scholar

  • [89] Fronval T., Jansen E., Late Neogene paleoclimates and paleoceanography in the Iceland-Norweigian Sea: evidence from the Iceland and Vøring Plateaus. In: Thiede J., Myhre A.M., Firth J.V., Johnson G.L., Ruddiman W.F. (Eds.), Proc. ODP, Sci. Results 151: College Station, TX (Ocean Drilling Program), 1996 Google Scholar

  • [90] Shackleton N.J., Backman J., Zimmerman H.B., Kent D.V., Hall M.A., Roberts D.G. et al., Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region, Nature, 1983, 307, 620–623 http://dx.doi.org/10.1038/307620a0CrossrefGoogle Scholar

  • [91] Ravelo A.C., Andreasen D.H., Lyle M., Olivarez Lyle A., Wara M.W., Regional climate shifts caused by global cooling in the Pliocene epoch, Nature, 2004, 429, 263–267 http://dx.doi.org/10.1038/nature02567CrossrefGoogle Scholar

  • [92] Haug G.H., Ganopolski A., Sigman D.M., Rosell-Mele A., Swann G.E.A, Tiedemann R. et al., North Pacific seasonality and the glaciation of North America 2.7 million years ago, Nature, 2005, 433, 821–825 http://dx.doi.org/10.1038/nature03332Google Scholar

  • [93] Tripati A., Backman J., Elderfield H., Feretti P., Eocene bipolar glaciation associated with global carbon cycle changes, Nature, 2005, 436, 341–346 http://dx.doi.org/10.1038/nature03874CrossrefGoogle Scholar

  • [94] Edgar K.M., Wilson P.A., Sexton P.F., Suganuma Y., No extreme bipolar glaciations during the main Eocene calcite compensation shift, Nature, 2007, 448, 908–911, DOI:10.1038/nature06053 http://dx.doi.org/10.1038/nature06053CrossrefGoogle Scholar

  • [95] Lear C.H., Bailey T.R., Pearson P.N., Coxall H.K., Rosenthal Y., Cooling and ice growth across the Eocene-Oligocene transition, Geology, 2008, 36, 251–254, DOI:10.1130/G24584A.1 http://dx.doi.org/10.1130/G24584A.1CrossrefGoogle Scholar

  • [96] Elderett J.S., Harding I.C., Wilson P.A., Butler E., Roberts A.P., Continental ice in Greenland during the Eocene and Oligocene, Nature, 2007, 446, 176–179, DOI:10.1038/nature05591 http://dx.doi.org/10.1038/nature05591CrossrefGoogle Scholar

  • [97] Tripati A.K., Eagle R.A., Morton A., Dowdeswell J.A., Atkinson K.L., Bahé Y. et al., Evidence for glaciation in the Northern Hemisphere back to 44 Ma from icerafted debris in the Greenland Sea, Earth Planet. Sci. Lett., 2008, 265, 112–122 http://dx.doi.org/10.1016/j.epsl.2007.09.045CrossrefGoogle Scholar

  • [98] Miller K.G., Wright J.D., Katz M.E., Browning J.V., Cramer B.S., Wade B.S. et al., A view of Antarctic ice-sheet evolution from sea-level and deep-sea isotope changes during the Late Cretaceous-Cenozoic. In: Cooper A.K., Barrett P., Stagg H., Storey B., Stump E., Wise W. (Eds.), Antarctica: A keystone in a changing world, Proc. 10th Int. Symp. Antarctic Earth Sciences, The National Academies Press, 2008 Google Scholar

  • [99] St. John K., Cenozoic ice-rafting history of the central Arctic Ocean: Terrigenous sands on the Lomonosov Ridge, Paleoceanography, 2008, 23, 1–12, PA1S05, DOI:10.1029/2007PA001483 http://dx.doi.org/10.1029/2007PA001483CrossrefGoogle Scholar

  • [100] DeConto R.M., Pollard D., Wilson P.A., Pälike H., Lear C.H., Pagani M., Thresholds for Cenozoic bipolar glaciation. Nature, 2008, 455, 652–656, DOI:10.1038/nature07337 http://dx.doi.org/10.1038/nature07337CrossrefGoogle Scholar

  • [101] Krylov A.A., Andreeva I.A., Vogt C., Backman J., Krupskaya V.V., Grikurov G.E. et al., A shift in heavy and clay mineral provenance indicates a middle Miocene onset of a perennial sea ice cover in the Arctic Ocean, Paleoceanography, 2008, 23, 1–10, PA1S06, DOI:10.1029/2007PA001497 http://dx.doi.org/10.1029/2007PA001497CrossrefGoogle Scholar

  • [102] Haley B., Frank M., Spielhagen R.F., Fietzke J., Radiogenic isotope record of Arctic Ocean circulation and weathering inputs of the past 15 million years, Paleoceanography, 2008, 23, 1–16, PA1S13, DOI:10.1029/2007PA001486 http://dx.doi.org/10.1029/2007PA001486CrossrefGoogle Scholar

  • [103] Darby D.A., Arctic perennial ice cover over the last 14 million years, Paleoceanography, 2008, 23, 1–9, PA1S07, doi:10.1029/2007PA001479 http://dx.doi.org/10.1029/2007PA001479CrossrefGoogle Scholar

  • [104] Zachos J., Pagani M., Sloan L., Thomas E., Billups K., Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 2001, 292, 686–693, DOI:10.1126/science.1059412 http://dx.doi.org/10.1126/science.1059412CrossrefGoogle Scholar

  • [105] Miller K.G., Fairbanks R.G., Mountain G.S., Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion, Paleoceanography, 1987, 2, 1–19 http://dx.doi.org/10.1029/PA002i001p00001CrossrefGoogle Scholar

  • [106] Amon R.M.W., Benner R., Combined neutral sugars as indicators of the diagenetic state of dissolved organic matter in the Arctic Ocean, Deep-Sea Res. I, 2003, 50, 151–169 http://dx.doi.org/10.1016/S0967-0637(02)00130-9CrossrefGoogle Scholar

  • [107] Hedges J. I., Global biogeochemical cycles: Progress and problems, Mar. Chem., 1992, 39, 67–93 http://dx.doi.org/10.1016/0304-4203(92)90096-SCrossrefGoogle Scholar

  • [108] Peltier W.R., Liu Y., Crowley J.W., Snowball Earth prevention by dissolved organic carbon mineralization, Nature, 2007, 450, 813–818, DOI:10.1038/nature06354 http://dx.doi.org/10.1038/nature06354CrossrefGoogle Scholar

  • [109] Peltier W.R., Vettoretti G., Stastna M., Atlantic meridional overturning and climate response to Arctic Ocean freshening, Geophys. Res. Lett., 2006, 33, 1–4, L06713, DOI:10.1029/2005GL025251 CrossrefGoogle Scholar

  • [110] Tarasov L., Peltier W.R., Arctic freshwater forcing of the Younger Dryas cold reversal, Nature, 2005, 435, 662–665, DOI:10.1038/nature03617 http://dx.doi.org/10.1038/nature03617CrossrefGoogle Scholar

  • [111] Jakobsson M., Macnab R., Mayer L., Anderson R., Edwards M., Hatzky J. et al., An improved bathymetric portrayal of the Arctic Ocean: Implications for ocean modeling and geological, geophysical and oceanographic analyses, Geophys. Res. Lett., 2008, 35, 1–5, L07602, DOI:10.1029/2008GL033520 http://dx.doi.org/10.1029/2008GL033520CrossrefGoogle Scholar

  • [112] Jakobsson M., Flodén T., IODP Expedition 302 Scientists, Expedition 302 geophysicists: integrating past data with new results. In: Backman J., Moran K., McInroy D.B., Mayer L.A. (Eds.), Proc. IODP 302: Edinburgh (Integrated Ocean Drilling Program Management International, Inc.), 2006, DOI:10.2204/iodp.proc.302.102.2006 CrossrefGoogle Scholar

  • [113] Zachos J.C., Dickens G.R., Zeebe R.E., An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics, Nature, 2008, 451, 279–283, DOI:10.1038/nature06588 http://dx.doi.org/10.1038/nature06588CrossrefGoogle Scholar

About the article

Published Online: 2009-06-01

Published in Print: 2009-06-01

Citation Information: Open Geosciences, Volume 1, Issue 2, Pages 157–175, ISSN (Online) 2391-5447, DOI: https://doi.org/10.2478/v10085-009-0015-6.

Export Citation

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Bernard Coakley, Kelley Brumley, Nina Lebedeva-Ivanova, and David Mosher
Journal of the Geological Society, 2016, Volume 173, Number 6, Page 967
Elizabeth L. Miller, Kristian E. Meisling, Vyacheslav V. Akinin, Kelley Brumley, Bernard J. Coakley, Eric S. Gottlieb, Carl W. Hoiland, Timothy M. O'Brien, Anna Soboleva, and Jaime Toro
Geological Society, London, Special Publications, 2018, Volume 460, Number 1, Page 57
Masanobu Yamamoto
The Journal of the Geological Society of Japan, 2018, Volume 124, Number 1, Page 3
Clint M. Miller, Gerald R. Dickens, Martin Jakobsson, Carina Johansson, Andrey Koshurnikov, Matt O'Regan, Francesco Muschitiello, Christian Stranne, and Carl-Magnus Mörth
Biogeosciences, 2017, Volume 14, Number 12, Page 2929
John A. Barron, Catherine E. Stickley, and David Bukry
Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, Volume 422, Page 85
Jochen Knies, Rune Mattingsdal, Karl Fabian, Kari Grøsfjeld, Soma Baranwal, Katrine Husum, Stijn De Schepper, Christoph Vogt, Nils Andersen, Jens Matthiessen, Karin Andreassen, Wilfried Jokat, Seung-Il Nam, and Carmen Gaina
Earth and Planetary Science Letters, 2014, Volume 387, Page 132
R. D. Norris, S. K. Turner, P. M. Hull, and A. Ridgwell
Science, 2013, Volume 341, Number 6145, Page 492
Christian März, Christoph Vogt, Bernhard Schnetger, and Hans-Jürgen Brumsack
Earth and Planetary Science Letters, 2011, Volume 310, Number 3-4, Page 526
Matt O'Regan
IOP Conference Series: Earth and Environmental Science, 2011, Volume 14, Page 012002

Comments (0)

Please log in or register to comment.
Log in