Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year

IMPACT FACTOR 2017: 0.696
5-year IMPACT FACTOR: 0.736

CiteScore 2017: 0.89

SCImago Journal Rank (SJR) 2017: 0.323
Source Normalized Impact per Paper (SNIP) 2017: 0.674

Open Access
See all formats and pricing
More options …

Modern analogues for Miocene to Pleistocene alkali basaltic phreatomagmatic fields in the Pannonian Basin: “soft-substrate” to “combined” aquifer controlled phreatomagmatism in intraplate volcanic fields Research Article

Károly Németh / Shane Cronin / Miguel Haller / Marco Brenna
  • Universidad Nacional de la Patagonia San Juan Bosco — Sede Puerto Madryn, Consejo Nacional de Investigaciones Cientfficas y Técnicas, Argentina
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gabor Csillag
Published Online: 2010-09-01 | DOI: https://doi.org/10.2478/v10085-010-0013-8


The Pannonian Basin (Central Europe) hosts numerous alkali basaltic volcanic fields in an area similar to 200 000 km2. These volcanic fields were formed in an approximate time span of 8 million years producing smallvolume volcanoes typically considered to be monogenetic. Polycyclic monogenetic volcanic complexes are also common in each field however. The original morphology of volcanic landforms, especially phreatomagmatic volcanoes, is commonly modified. by erosion, commonly aided by tectonic uplift. The phreatomagmatic volcanoes eroded to the level of their sub-surface architecture expose crater to conduit filling as well as diatreme facies of pyroclastic rock assemblages. Uncertainties due to the strong erosion influenced by tectonic uplifts, fast and broad climatic changes, vegetation cover variations, and rapidly changing fluvio-lacustrine events in the past 8 million years in the Pannonian Basin have created a need to reconstruct and visualise the paleoenvironment into which the monogenetic volcanoes erupted. Here phreatomagmatic volcanic fields of the Miocene to Pleistocene western Hungarian alkali basaltic province have been selected and compared with modern phreatomagmatic fields. It has been concluded that the Auckland Volcanic Field (AVF) in New Zealand could be viewed as a prime modern analogue for the western Hungarian phreatomagmatic fields by sharing similarities in their pyroclastic successions textures such as pyroclast morphology, type, juvenile particle ratio to accidental lithics. Beside the AVF two other, morphologically more modified volcanic fields (Pali Aike, Argentina and Jeju, Korea) show similar features to the western Hungarian examples, highlighting issues such as preservation potential of pyroclastic successions of phreatomagmatic volcanoes.

Keywords: phreatomagmatic; volcanic glass; sideromelane; maar; tuff ring; scoria cone; monogenetic; volcanic field; porous media aquifer; fracture-controlled aquifer

  • [1] White J.D.L., Maar-diatreme phreatomagmatism at Hopi Buttes, Navajo Nation (Arizona), USA, B. Volcanol., 1991, 53, 239–258 http://dx.doi.org/10.1007/BF00414522CrossrefGoogle Scholar

  • [2] Manville V., Nemeth K., Kano K., Source to sink: A review of three decades of progress in the understanding of volcaniclastic processes, deposits, and hazards, Sediment. Geol., 2009, 220, 136–161 http://dx.doi.org/10.1016/j.sedgeo.2009.04.022CrossrefGoogle Scholar

  • [3] Lorenz V., On the growth of maars and diatremes and its relevance to the formation of tuff rings, B. Volcanol., 1986, 48, 265–274 http://dx.doi.org/10.1007/BF01081755CrossrefGoogle Scholar

  • [4] Lorenz V., Maars and diatremes of phreatomagmatic origin: a review, Transactions of the Geological Society of South Africa, 1985, 88, 459–470 Google Scholar

  • [5] Lorenz V., Kurszlaukis S., Root zone processes in the phreatomagmatic pipe emplacement model and consequences for the evolution of maar-diatreme volcanoes, J. Volcanol. Geoth. Res., 2007, 159, 4–32 http://dx.doi.org/10.1016/j.jvolgeores.2006.06.019CrossrefGoogle Scholar

  • [6] Martin U., Németh K., Mio/Pliocene phreatomagmatic volcanism in the western Pannonian Basin, Geologica Hungarica Series Geologica, 2004, Budapest, Geological Institute of Hungary Google Scholar

  • [7] Allen S.R., Bryner V.F., Smith I.E.M., Ballance P.F., Facies analysis of pyroclastic deposits within basaltic tuff-rings of the Auckland volcanic field, New Zealand, New Zeal. J. Geol. Geop., 1996, 39, 309–327 CrossrefGoogle Scholar

  • [8] Magill, C., Blong, R., Volcanic risk ranking for Auckland, New Zealand. I: Methodology and hazard investigation, B. Volcanol., 2005, 67, 331–339. http://dx.doi.org/10.1007/s00445-004-0374-6CrossrefGoogle Scholar

  • [9] Houghton B.F., Wilson C.J.N., Rosenberg M.D., Smith I.E.M., Parker R.J., Mixed deposits of complex magmatic and phreatomagmatic volcanism: An example from Crater Hill, Auckland, New Zeal. B. Volcanol., 1996, 58, 59–66 http://dx.doi.org/10.1007/s004450050126CrossrefGoogle Scholar

  • [10] von Veh M.W., Nemeth K., An assessment of the alignments of vents on geostatistical analysis in the Auckland Volcanic Field, New Zealand. Geomorphologie-Relief Processus Environnement, 2009, 175-186 Google Scholar

  • [11] Németh K., Martin U., Late Miocene paleogeomorphology of the Bakony-Balaton Highland Volcanic Field (Hungary) using physical volcanology data, Z. für Geomorph., 1999, 43, 417–438 Google Scholar

  • [12] Németh K., Martin U., Philippe M., Eroded porousmedia aquifer controlled hydrovolcanic centers in the South Lake Balaton region, Hungary;the Boglár Volcano, Acta Geologica Hungarica, 1999, 42, 251–266 Google Scholar

  • [13] Németh K., Martin U., Csillag G., Erosion rate calculation based on eroded monogenetic alkaline basaltic volcanoes of the Mio/Pliocene Bakony-Balaton Highland Volcanic Field, Hungary, Geolines, 2003, 15, 93–97 Google Scholar

  • [14] Németh K., Martin U., Large hydrovolcanic field in the Pannonian Basin: general characteristics of the Bakony — Balaton Highland Volcanic Field, Hungary, Acta Vulcanologica, 1999, 11, 271–282 Google Scholar

  • [15] Ruszkiczay-Rüdiger Z., Fodor L., Horváth E., Telbisz T., Discrimination of fluvial, eolian and neotectonic features in a low hilly landscape: A DEM-based morphotectonic analysis in the Central Pannonian Basin, Hungary, Geomorphology, 2009, 104, 203–217 http://dx.doi.org/10.1016/j.geomorph.2008.08.014CrossrefGoogle Scholar

  • [16] Sohn Y.K., Hydrovolcanic processes forming basaltic tuff rings and cones on Cheju Island, Korea, Geol. Soc. Am. Bull., 1996, 108, 1199–1211. http://dx.doi.org/10.1130/0016-7606(1996)108<1199:HPFBTR>2.3.CO;2CrossrefGoogle Scholar

  • [17] Sohn Y.K., Park K.H., Yoon S.H., Primary versus secondary and subaerial versus submarine hydrovolcanic deposits in the subsurface of Jeju Island, Korea, Sedimentology, 2008, 55, 899–924 http://dx.doi.org/10.1111/j.1365-3091.2007.00927.xCrossrefGoogle Scholar

  • [18] Sohn Y.K., Park K.H., Early-stage volcanism and sedimentation of Jeju island revealed by the Sagye Borehole, SW Jeju Island, Korea. Geosci. J., 2004, 8, 73–84 http://dx.doi.org/10.1007/BF02910280CrossrefGoogle Scholar

  • [19] Sohn Y.K., Chough S.K., Depositional processes of the Suwolbong Tuff Ring, Cheju Island (Korea). Sedimentology, 1989, 36, 837–855 http://dx.doi.org/10.1111/j.1365-3091.1989.tb01749.xCrossrefGoogle Scholar

  • [20] Briggs R.M., Okada T., Itaya T., Shibuya H., Smith I.E.M., K-Ar Ages, paleomagnetism, and geochemistry of the South Auckland Volcanic Field, North-Island, New-Zealand, New Zeal. J. Geol. Geop., 1994, 37, 143–153 CrossrefGoogle Scholar

  • [21] Spörli K.B., Eastwood, V.R., Elliptical boundary of an intraplate volcanic field, Auckland, New Zealand. J. Volcanol. Geoth. Res., 1997, 79, 169–179 http://dx.doi.org/10.1016/S0377-0273(97)00030-9CrossrefGoogle Scholar

  • [22] Kermode L.O., Geology of the Auckland urban area (with map in scale 1: 50 000). Institute of Geological & Nuclear Sciences geological map 2. 1 sheet + Explanatory Book, 1992, Institute of Geological & Nuclear Sciences, Lower Hutt, New Zealand Google Scholar

  • [23] Rogan W., Blake S., Smith I., In situ chemical fractionation in thin basaltic lava flows: Examples from the Auckland volcanic field, New Zealand, and a general physical model, J. Volcanol. Geoth. Res., 1996, 74, 89–99 http://dx.doi.org/10.1016/S0377-0273(96)00059-5CrossrefGoogle Scholar

  • [24] Affleck D.K., Cassidy J., Locke C.A., Te Pouhawaiki Volcano and pre-volcanic topography in central Auckland: volcanological and hydrogeological implications, New Zealand Journal of Geology and Geophysics, 2001, 44, 313–321 http://dx.doi.org/10.1080/00288306.2001.9514940CrossrefGoogle Scholar

  • [25] Cassidy J., France S.J., Locke C.A., Gravity and magnetic investigation of maar volcanoes, Auckland volcanic field, New Zealand. Journal of Volcanology and Geothermal Research, 2007, 159, 153–163 http://dx.doi.org/10.1016/j.jvolgeores.2006.06.007CrossrefGoogle Scholar

  • [26] Marra M.J., Alloway B.V., Newnham R.M., Paleoenvironmental reconstruction ofa well-preserved Stage 7 forest sequence catastrophically buried by basaltic eruptive deposits, northern New Zealand, Quaternary Science Reviews, 2006, 25, 2143–2161 http://dx.doi.org/10.1016/j.quascirev.2006.01.031CrossrefGoogle Scholar

  • [27] Martin U., Németh K., Eruptive and depositional history of a Pliocene tuff ring that developed in a fluviolacustrine basin: Kissomlyö Volcano (Western Hungary), J. Volcanol. Geoth. Res., 2005, 147, 342–356 http://dx.doi.org/10.1016/j.jvolgeores.2005.04.019CrossrefGoogle Scholar

  • [28] Heiken G.H., Tuff Rings &#x2014; Examples From Fort Rock-Christmas Lake Valley Basin, South Central Oregon, J. Geophys. Res., 1971, 76, 5615 http://dx.doi.org/10.1029/JB076i023p05615CrossrefGoogle Scholar

  • [29] Houghton B.F., Wilson C.J.N., Smith I.E.M., Shallow-seated controls on styles of explosive basaltic volcanism: a case study from New Zealand, J. Volcanol. Geoth. Res., 1999, 91, 97–120 http://dx.doi.org/10.1016/S0377-0273(99)00058-XCrossrefGoogle Scholar

  • [30] Auer A., Martin U., Németh K., The Fekete-hegy (Balaton Highland Hungary) “soft-substrate” and “hard-substrate” maar volcanoes in an aligned vol-canic complex &#x2014; Implications for vent geometry, sub-surface stratigraphy and the palaeoenvironmental setting, J. Volcanol. Geoth. Res., 2007, 159, 225–245 http://dx.doi.org/10.1016/j.jvolgeores.2006.06.008CrossrefGoogle Scholar

  • [31] Cronin S.J., Németh K., Smith I.E.M., Leonard G., Shane P., Possible rejuvenation of volcanism at the “monogenetic” phreatomagmatic/magmatic volcanic complex of Panmure Basin, Auckland Volcanic Field, New Zealand. In: Haller M.J. and Massaferro G. (Eds.), IAVCEI-IAS 3rd International Maar Conference 2009. Malargue, Argentina: Asociacion Geologica Argentina Google Scholar

  • [32] Németh K., Cronin S.J., Smith I.E.M., Stewart R.B. Mechanisms of a maar-forming eruption through soft fine-grained sedimentary substrate: Orakei Basin, Auckland, New Zealand. In: Haller M.J. and Massaferro G. (Eds.), IAVCEI-IAS 3rd International Maar Conference 2009. Malargue, Argentina: Asociacion Geologica Argentina Google Scholar

  • [33] McDougall I., Pollack H.A., Stipp J.J., Excess radiogenic argon in young subareal basalts from Auckland volcanic field, New Zealand. Geochim. Cosmochim. Acta, 1969, 33, 1485–1520 http://dx.doi.org/10.1016/0016-7037(69)90152-5CrossrefGoogle Scholar

  • [34] Allen S.R., Bryner V.F., Smith I.E.M., Ballance P.F., Auckland volcanic field tuff ring deposits. In: Anonymous Editor, International volcanological congress, IAVCEI;abstracts., 1994, IAVCEI Google Scholar

  • [35] Allen S.R., Smith I.E.M., Eruption styles and volcanic hazard in the Auckland volcanic field, New Zealand. Geosci. Rep. Shizuoka Univ., 1994, 20, 5–14 Google Scholar

  • [36] Corbella H., El campo volcano-tectönico de Pali Aike, In: Haller M. ed,. Geologia y Recursos Naturales de Santa Cruz, Asociaciön Geologica Argentina, 2002, Buenos Aires, 285-302 Google Scholar

  • [37] Mazzarini F., D’Orazio M., Spatial distribution of cones and satellite-detected lineaments in the Pali Aike Volcanic Field (southernmost Patagonia): insights into the tectonic setting of a Neogene rift system, J. Volcanol. Geoth. Res., 2003, 125, 291–305 http://dx.doi.org/10.1016/S0377-0273(03)00120-3CrossrefGoogle Scholar

  • [38] Bruni S., D’Orazio M., Haller M.J., Innocenti F., Manetti P., Pecskay Z., Tonarini S., Time-evolution of magma sources in a continental back-arc setting: the Cenozoic basalts from Sierra de San Bernardo (Patagonia, Chubut, Argentina), Geol. Mag., 2008, 145, 714–732 http://dx.doi.org/10.1017/S0016756808004949CrossrefGoogle Scholar

  • [39] Massaferro G.I., Haller M.J., D’Orazio M., Alric V.I., Sub-recent volcanism in Northern Patagonia: A tectonomagmatic approach, J. Volcanol. Geoth. Res., 2006, 155, 227–243 http://dx.doi.org/10.1016/j.jvolgeores.2006.02.002CrossrefGoogle Scholar

  • [40] D’Orazio M., Innocenti F., Manetti P., Haller M.J., Di Vincenzo G., Tonarini S., The Late Pliocene mafic lavas from the Camusu Aike volcanic field (similar to 50 degrees S, Argentina): Evidence for geochemical variability in slab window magmatism, J. S. Am. Earth Sci., 2005, 18, 107–124 http://dx.doi.org/10.1016/j.jsames.2004.10.001CrossrefGoogle Scholar

  • [41] D’Orazio M., Innocenti F., Manetti P., Tamponi M., Tonarini S., Gonzalez-Ferran O., Lahsen A., Omarini R., The Quaternary calc-alkaline volcanism of the Patagonian Andes close to the Chile triple junction: geochemistry and petrogenesis of volcanic rocks from the Cay and Maca volcanoes (similar to 45 degrees S, Chile), J. S. Am. Earth Sci., 2003, 16, 219–242 http://dx.doi.org/10.1016/S0895-9811(03)00063-4CrossrefGoogle Scholar

  • [42] D’Orazio M., Agostini S., Innocenti F., Haller M.J., Manetti P., Mazzarini F., Slab window-related magmatism from southernmost South America: the Late Miocene mafic volcanics from the Estancia Glencross area (similar to 52 degrees S, Argentina-Chile), Lithos, 2001, 57, 67–89 http://dx.doi.org/10.1016/S0024-4937(01)00040-8CrossrefGoogle Scholar

  • [43] D’Orazio M., Agostini S., Mazzarini F., Innocenti F., Manetti P., Haller M.J., Lahsen A., The Palil Aike Volcanic Field, Patagonia: slab-window magmatism near the tip of South America. Tectonophysics, 2000, 321, 407–427 http://dx.doi.org/10.1016/S0040-1951(00)00082-2CrossrefGoogle Scholar

  • [44] De Ignacio C., Lopez I., Oyarzun R., Marquez A., The northern Patagonia Somuncura plateau basalts: a product of slab-induced, shallow asthenospheric upwelling? Terra Nova, 2001, 13, 117–121 http://dx.doi.org/10.1046/j.1365-3121.2001.00326.xCrossrefGoogle Scholar

  • [45] Haller M.J., Németh K., Architecture and pyroclas-tic succession of a small Quaternary (?) maar in the Pali Aike Volkanic Field, Santa Cruz, Argentina, Zeitschrift der deutschen geologischen Gesellschaft, 2006, 157, 467–476 http://dx.doi.org/10.1127/1860-1804/2006/0157-0467CrossrefGoogle Scholar

  • [46] Ross P.S., Delpit S., Haller M.J., Németh K., Corbella H., Influence of the substrate on maar-diatreme volcanoes &#x2014; an example of a mixed setting from the Pali Aike volcanic field, Argentina, J. Volcanol. Geoth. Res., 2010, (in press) Google Scholar

  • [47] Fejfar O., Heinrich W.D., Importance of two sites of fossil vertebrates, Ivanovce and Hajnacka, for mammalian paleontology in European Pliocene and Early Pleistocene: present stage of knowledge and problems, Vestnik Ustredniho Ustavu Geologického, 1985, 60, 213–224 Google Scholar

  • [48] Hably L., Kvacek Z., Pliocene mesophytic forests surrounding crater lakes in western Hungary. Revi. Palaeobot. Palyn., 1998, 101, 257–269 Google Scholar

  • [49] Kvacek Z., Hably L., Szakmány G., Additions to the Pliocene flora of Gérce (Western Hungary). Földtani Közlöny (Bulletin of the Hungarian Geological Society), Budapest, 1994, 124, 69–87 Google Scholar

  • [50] Fischer O., Hably L., Pliocene flora from the alginite at Gérce. Ann. Hist.-Nat. Mus. Natl. Hungary, 1991, 83, 25–47 Google Scholar

  • [51] Kordos L., Hajós M., Müller P., Nagy E., Environmental change and ecostratigraphy in the Carpathian Basin, Annales Instituti Geologici Publici Hungarici, 1987, 70, 377–391 Google Scholar

  • [52] Kereszturi G., Németh K., Csillag G., Kovács, J., Balogh, K., The role of external environmental factors in changing eruption styles of monogenetic volcanoes in a Pliocene continental volcanic field in western Hungary. J. Volcanol. Geoth. Res., 2010, (in press) Google Scholar

  • [53] Mayr C., Lucke A., Maidana N.I., Wille M., Haberzettl T., Corbella H., Ohlendorf C., Schabitz F., et al, Isotopic fingerprints on lacustrine organic matter from Laguna Potrok Aike (southern Patagonia, Argentina) reflect environmental changes during the last 16,000 years. J. Paleolimnol., 2009, 42, 81–102 http://dx.doi.org/10.1007/s10933-008-9249-8CrossrefGoogle Scholar

  • [54] Anselmetti F.S., Ariztegui D., De Batist M., Gebhardt A.C., Haberzettl T., Niessen F., Ohlendorf C., Zolitschka B., Environmental history of southern Patagonia unravelled by the seismic stratigraphy of Laguna Potrok Aike, Sedimentology, 2009, 56, 873–892 http://dx.doi.org/10.1111/j.1365-3091.2008.01002.xCrossrefGoogle Scholar

  • [55] Haberzettl T., Kuck B., Wulf S., Anselmetti F., Ariztegui D., Corbella H., Fey M., Janssen S., et al., Hydrological variability in southeastern Patagonia and explosive volcanic activity in the southern Andean Cordillera during Oxygen Isotope Stage 3 and the Holocene inferred from lake sediments of Laguna Potrok Aike, Argentina. Palaeo. Palaeo. Palaeo., 2008, 259, 213–229 CrossrefGoogle Scholar

  • [56] Chen Y., Zhang Y.X., Graham D., Su S.G., Deng J.F., Geochemistry of Cenozoic basalts and mantle xenoliths in Northeast China, Lithos, 2007, 96, 108–126 http://dx.doi.org/10.1016/j.lithos.2006.09.015CrossrefGoogle Scholar

  • [57] Sohn Y.K., Park K.H., Phreatomagmatic volcanoes of Jeju Island, Korea. IAVCEI-CEV-CVS Field Workshop, Jeju Island, Korea, November 13-17, 2007. Jeju Special Self-Governing Province, Jeju, Korea, 2007 Google Scholar

  • [58] Hamdy A.M., Park P.H., Lim H.C., Park K.D., Present-day relative displacements between the Jeju Island and the Korean peninsula as seen from GPS observations, Earth Planets Space, 2004, 56, 927–931 Google Scholar

  • [59] Hamdy A.M., Park P.H., Jo B.G., Preliminary crustal movement study around the Honam shear zone and Okchon Belt (South Korea) using GPS observations, Geosci. J., 2004, 8, 109–112 http://dx.doi.org/10.1007/BF02910284CrossrefGoogle Scholar

  • [60] Jin S.G., Park P.H., Zhu W.Y., Micro-plate tectonics and kinematics in Northeast Asia inferred from a dense set of GPS observations. Earth Planet. Sci. Lett., 2007, 257, 486–496 http://dx.doi.org/10.1016/j.epsl.2007.03.011CrossrefGoogle Scholar

  • [61] Koh J.S., Yun S.H., Kang S.S., Petrology of the volcanic rocks in the Paekrogdam Crater area, Mt. Halla, Jeju Island, Journal of the Petrological Society of Korea, 2003, 12, 1–15 Google Scholar

  • [62] Kang S., Benthic foraminiferal biostratigraphy and paleoenvironments of the Seogwipo Formation, Jeju Island, Korea, Journal ofthe Paleontological Society of Korea, 2003, 19, 63–153 Google Scholar

  • [63] Németh K., Martin U., Harangi S., Miocene phreatomagmatic volcanism at Tihany (Pannonian Basin, Hungary), J. Volcanol. Geoth. Res., 2001, 111, 111–135 http://dx.doi.org/10.1016/S0377-0273(01)00223-2CrossrefGoogle Scholar

  • [64] Won J.H., Lee J.Y., Kim J.W., Koh G.W., Groundwater occurrence on Jeju Island, Korea, Hydrogeol. J., 2006, 14, 532–547 Google Scholar

  • [65] Tatsumi Y., Shukuno H., Yoshikawa M., Chang Q., Sato K., Lee M.W., The petrology and geochemistry of volcanic rocks on Jeju Island: plume magmatism along the Asian continental margin. J. Petrol., 2005, 46, 523–553 http://dx.doi.org/10.1093/petrology/egh087CrossrefGoogle Scholar

  • [66] Sohn Y.K., Park K.H., Composite tuff ring/cone complexes in Jeju Island, Korea: possible consequences of substrate collapse and vent migration, J. Volcanol. Geoth. Res., 2005, 141, 157–175 http://dx.doi.org/10.1016/j.jvolgeores.2004.10.003CrossrefGoogle Scholar

  • [67] Wijbrans J., Németh K., Martin U., Balogh K., Ar40/Ar-39 geochronology of Neogene phreatomagmatic volcanism in the western Pannonian Basin, Hungary, J. Volcanol. Geoth. Res., 2007, 164, 193–204 http://dx.doi.org/10.1016/j.jvolgeores.2007.05.009CrossrefGoogle Scholar

  • [68] White J.D.L., McClintock M.K., Immense vent complex marks flood-basalt eruption in a wet, failed rift: Coombs Hills, Antarctica, Geology, 2001, 29, 935–938 http://dx.doi.org/10.1130/0091-7613(2001)029<0935:IVCMFB>2.0.CO;2CrossrefGoogle Scholar

  • [69] Lorenz V., Maar-diatreme volcanoes, their formation, and their setting in hard-rock or soft-rock environments. Geolines, 2003, 15, 72–83 Google Scholar

  • [70] Lorenz, V., Suhr, P., Goth, K., Maar-Diatrem-Vulkanismus á€$ Ursachen und Folgen. Die Gut-tauer Vulkangruppe in Ostsachsen als Beispiel für die komplexen Zusammenhänge (Maar-diatreme volcanism á€$ causes and consequences. The Guttau Volcano Group ineastern Saxony as an example for the complex processes and relationships), Zeitschriftfür Geologische Wissenschaften (Journal for the Geological Sciences) &#x2014; ISSN 0303-4534., Berlin, 2003, 31, 267–312 Google Scholar

  • [71] Lorenz V., Syn- and post-eruptive processes ofmaardiatreme volcanoes and their relevance to the ac-cumulation of post-eruptive maar crater sediments, Földtani Kutatás (Quaterly Journals of the Geological Survey of Hungary), Budapest, 2003, 40, 13–22. Google Scholar

  • [72] Skilling I.P., White J.D.L., McPhie J., Peperite: a review of magma-sediment mingling. J. Volcanol. Geoth. Res., 2002, 114, 1–17 http://dx.doi.org/10.1016/S0377-0273(01)00278-5CrossrefGoogle Scholar

  • [73] Martin U., Németh K., Blocky versus fluidal peperite textures developed in volcanic conduits, vents and crater lakes of phreatomagmatic volcanoes in Mio/Pliocene volcanic fields of Western Hungary, J. Volcanol. Geoth. Res., 2007, 159, 164–178 http://dx.doi.org/10.1016/j.jvolgeores.2006.06.010CrossrefGoogle Scholar

  • [74] Busby-Spera C.J., White J.D.L., Variation in peperite textures associated with differing host-sediment properties, Bull. Volcanol., 1987, 49, 765–775 http://dx.doi.org/10.1007/BF01079827CrossrefGoogle Scholar

  • [75] Balogh K., Németh K., Evidence for the neogene small-volume intracontinental volcanism in western Hungary: K/Ar geochronology of the Tihany Maar volcanic complex, Geol. Carpath., 2005, 56, 91–99 Google Scholar

  • [76] Balogh K., Árva-Sós E., Pécskay Z., Ravasz- Baranyai L., K/Ar dating of post-Sarmatian alkali basaltic rocks in Hungary, Acta Mineralogica et Petrographica, Szeged, 1986, 28, 75–94 Google Scholar

  • [77] Balogh K., Pécskay Z., K/Ar and Ar/Ar geochronological studies in the Pannonian-Carpathians-Dinarides (PANCARDI) region, Acta Geologica Academiae Scientiarum Hungaricae, 2001, 44, 281–301 Google Scholar

  • [78] Budai T., Csillag G., A Balaton-felvidék földtana: magyarázó a Balaton-felvidék földtani térképéhez, 1:50 000 (Geology of the Balaton Highland: explanatory booklet for the geology map of the Balaton Highland, scale 1:50 000), In: Brezsnyánszky K. (Ed.), Occasional Papers of the Geological Institute of Hungary, 197, Geological Institute of Hungary, Budapest, 1999 Google Scholar

  • [79] Németh K., Martin U., Magyar I., Field guide to Pliocene phreatomagmatic volcanoes along the Raba Fault Zone, Western Hungary. International Union of Geological Sciences &#x2014; Subcommission on Neo gene Stratigraphy: Regional Committee on Mediterranean Neogene Stratigraphy &#x2014; “Patterns and Processes in the Neogene of the Mediterranean Region, 2005 Google Scholar

  • [80] Magyar I., Geary D.H., Muller P., Paleogeographic evolution of the Late Miocene Lake Pannon in Central Europe. Palaeogeogr. Palaeocl., 1999, 147, 151–167 http://dx.doi.org/10.1016/S0031-0182(98)00155-2CrossrefGoogle Scholar

  • [81] Sacchi M., Horváth F., Magyar I., Müller P., Problems and progress in establishing a Late Neogene Chronostratigraphy for the Central Paratethys, Neogene Newsletter, Padova, 1997, 4, 37–46 Google Scholar

  • [82] Sacchi M., Horváth F., Magyari O., Role of unconformity-bounded units in the stratigraphy of the continental cord; a case study from thelate Miocene of the western Pannonlan Basin, Hungary, In: Durand B., Jollvet L., Horvath F., Ranne M., (eds.), The Mediterranean basins;Tertiary extension within the Alpine Orogen., 1999, GeoLoglcaL Society of London, London, 357–390 Google Scholar

  • [83] Sacchi M., Horvath F., Towards a new time scale for the Upper Miocene continental series of the Pannonian basin (Central Paratethys). In: Cloetingh S.A.P.L., Horvath F., Bada G., and Lankreijer A.C. (Eds.), Neotectonics and surface processes: the Pannonian Basin and Alpine/Carpathian System, Stephan Mueller Special Publication Series, 2002, 79-94 Google Scholar

  • [84] Kereszturi G., Csillag G., Németh K., Sebe K., BaLogh K., Jager V., Volcanic architecture, eruption mechanism and Landform evolution of a Pliocene intracontinental basaLtic polycycLic monogenetic volcano from the Bakony- Balaton Highland VoLcanic Field, Hungary, Cent. Eur. J. Geosc., 2010, (in press) Google Scholar

  • [85] Fisher R.V., Schmincke H.U., Pyroclastic Rocks, 1984, Springer, Heidelberg Google Scholar

  • [86] Valentine G.A., Gregg T.K.P., Continental basaltic volcanoes &#x2014; Processes and problems, J. Volcanol. Geoth. Res., 2008, 177, 857–873 http://dx.doi.org/10.1016/j.jvolgeores.2008.01.050CrossrefGoogle Scholar

  • [87] Lorenz V., McBirney A.R., Williams H., An investigation of volcanic depressions. Part III. Maars, tuffrings, tuff-cones and diatremes, NASA Progress Report (NGR &#x2014; 38-003,012). 1970, Houston, Texas: CLearinghouse for Federal Scientific and Technical Information, SpringfieLd Google Scholar

  • [88] Waters A.C., Fisher R.V., Maar volcanoes, In: GiLmour E.H. and Stradling D. (Eds.), Proceedings of the 2nd Columbia River Basalt Symposium, 1970, Eastern Washington State College Press: Cheney Washington, 157–170 Google Scholar

  • [89] Keating G.N., VaLentine G.A., Krier D.J., Perry F.V., Shallow pLumbing systems for small-volume basaltic volcanoes, Bull. Volcanol., 2008, DOI 10.1007/s00445-007-0154-1 CrossrefGoogle Scholar

  • [90] Kienle J., Kyle P.R., Self S., Motyka R.J., Lorenz V., Uninrek Maars, Alaska, 1. April 1977 eruption sequence, petroLogy, and tectonic settings, J. Geophys. Res., 1980, 7, 11–37 Google Scholar

  • [91] Self S., Kienle J., Huot J.P., Ukinrek Maars, Alaska 2. Deposits and formation of the 1977 craters, J. Volcanol. Geoth. Res., 1980, 7, 39–65 http://dx.doi.org/10.1016/0377-0273(80)90019-0Google Scholar

  • [92] Müller G., Veyl G., The birth of Nilahue, a new maar type volcano at Rininahue, Chile. In: GarcAoea Rojas A. (Ed.), Congreso Geologico InternacionaL, 195, Seccio I &#x2014; Vulcanologia del Cenozoico Mexico D.F., 375-396 Google Scholar

  • [93] Wohletz K.H., Mechanisms of hydrovoLcanic pyroclast formation: grain-size, scanning eLectron microscopy, and experimental studies, J. Volcanol. Geoth. Res., 1983, 17, 31–63 http://dx.doi.org/10.1016/0377-0273(83)90061-6CrossrefGoogle Scholar

  • [94] Sheridan M.F., WohLetz K.H., Hydrovolcanism &#x2014; Basic considerations and review, J. Volcanol. Geoth. Res., 1983, 17, 1–29 http://dx.doi.org/10.1016/0377-0273(83)90060-4CrossrefGoogle Scholar

  • [95] Wohletz K.H., McQueen R.G., Experimental studies in hydromagmatic volcanism in Studies in Geophysics: Explosive volcanism: Inception, evolution and hazards. 1984, National Academy Press, Washington Google Scholar

  • [96] Wohletz K.H., Explosive magma-water interactions: Thermodynamics, explosion mechanisms, and field studies. Bull. Volcanol., 1986, 48, 245–264 http://dx.doi.org/10.1007/BF01081754CrossrefGoogle Scholar

  • [97] WohLetz K., Heiken G., Volcanology and geothermal energy, 1992, University of Cakifornia Press, Berkeley Google Scholar

  • [98] Keating G.N., Valentine G.A., Krier D.J., Perry F.V., Shallow plumbing systems for small-volume basaltic volcanoes, Bull. Volcanol., 2008, 70, 563–582 http://dx.doi.org/10.1007/s00445-007-0154-1CrossrefGoogle Scholar

  • [99] Funiciello R., Giordano G., De Rita D., The ALbano maar Lake (Colli Albani VoLcano, Italy): recent volcanic activity and evidence of pre-Roman Age catastrophic lahar events, J. VoLcanoL. Geoth. Res., 2003, 123, 43–61 http://dx.doi.org/10.1016/S0377-0273(03)00027-1CrossrefGoogle Scholar

  • [100] Valentine G.A., Krier D.J., Perry F.V., Heiken G., Eruptive and geomorphic processes at the Lathrop Wells scoria cone volcano., J. Volcanol. Geoth. Res. 2007, 161, 57–80 http://dx.doi.org/10.1016/j.jvolgeores.2006.11.003CrossrefGoogle Scholar

  • [101] BaLogh K., Jámbor A., Partényi Z., Ravaszné Baranyai L., Solti G., A dunántúli bazaltok K/Ar radiometrikus kora (K/Ar radigenic age of Transdanubian basaLts), (in Hungarian with English summary), MÁFI Évi Jelentése 1980-ról (Annual Report of the GeoLogicaL Institute of Hungary), 1982, 243-259 Google Scholar

  • [102] Brenna M., Cronin S.J., Smith I.E.M., Sohn Y.-K., Németh K., Mechanisms driving polymagmatic activity at a monogenetic volcano, Udo, Jeju Island, South Korea, Contrib. Mineral. Petr., 2010, DOI 10.1007/s00410-010-0515-1 CrossrefGoogle Scholar

  • [103] Németh K., Martin U., Csillag G., Calculation of ero sion rates based on remnants of monogenetic alkaline basaltic volcanoes in the Bakony-Balaton Highland Volcanic Field (Western Hungary) of Mio/Pliocene age, Geolines, 2003, 15, 93–97 Google Scholar

  • [104] Lorenz V., On the formation of Maars, Bull. Volcanol., 1973, 37, 183–204 http://dx.doi.org/10.1007/BF02597130CrossrefGoogle Scholar

  • [105] Lorenz V., Phreatomagmatism and its relevance. Chem. Geol., 1987, 62, 149–156 http://dx.doi.org/10.1016/0009-2541(87)90066-0CrossrefGoogle Scholar

About the article

Published Online: 2010-09-01

Published in Print: 2010-09-01

Citation Information: Open Geosciences, Volume 2, Issue 3, Pages 339–361, ISSN (Online) 2391-5447, DOI: https://doi.org/10.2478/v10085-010-0013-8.

Export Citation

© 2010 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Boris Chako Tchamabé, Takeshi Ohba, Issa  , Seigo Ooki, Dieudonné Youmen, Sebastien Owona, Gregory Tanyileke, and Joseph Victor Hell
International Journal of Geosciences, 2014, Volume 05, Number 11, Page 1315
Séverine Delpit, Pierre-Simon Ross, and B. Carter Hearn
Bulletin of Volcanology, 2014, Volume 76, Number 7
Javier Agustín-Flores, Károly Németh, Shane J. Cronin, Jan M. Lindsay, Gábor Kereszturi, Brittany D. Brand, and Ian E.M. Smith
Journal of Volcanology and Geothermal Research, 2014, Volume 276, Page 46
Gianluca Sottili, Danilo M. Palladino, Mario Gaeta, and Matteo Masotta
Bulletin of Volcanology, 2012, Volume 74, Number 1, Page 163

Comments (0)

Please log in or register to comment.
Log in