Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

IMPACT FACTOR 2017: 0.696
5-year IMPACT FACTOR: 0.736

CiteScore 2017: 0.89

SCImago Journal Rank (SJR) 2017: 0.323
Source Normalized Impact per Paper (SNIP) 2017: 0.674

Open Access
See all formats and pricing
More options …

Volcanic glass textures, shape characteristics and compositions of phreatomagmatic rock units from the Western Hungarian monogenetic volcanic fields and their implications for magma fragmentation

Karoly Németh
Published Online: 2010-09-01 | DOI: https://doi.org/10.2478/v10085-010-0015-6


The majority of the Mio-Pleistocene monogenetic volcanoes in Western Hungary had, at least in their initial eruptive phase, phreatomagmatic eruptions that produced pyroclastic deposits rich in volcanic glass shards. Electron microprobe studies on fresh samples of volcanic glass from the pyroclastic deposits revealed a primarily tephritic composition. A shape analysis of the volcanic glass shards indicated that the fine-ash fractions of the phreatomagmatic material fragmented in a brittle fashion. In general, the glass shards are blocky in shape, low in vesicularity, and have a low-to-moderate microlite content. The glass-shape analysis was supplemented by fractal dimension calculations of the glassy pyroclasts. The fractal dimensions of the glass shards range from 1.06802 to 1.50088, with an average value of 1.237072876, based on fractal dimension tests of 157 individual glass shards. The average and mean fractal-dimension values are similar to the theoretical Koch-flake (snowflake) value of 1.262, suggesting that the majority of the glass shards are bulky with complex boundaries. Light-microscopy and backscattered-electron-microscopy images confirm that the glass shards are typically bulky with fractured and complex particle outlines and low vesicularity; features that are observed in glass shards generated in either a laboratory setting or naturally through the interaction of hot melt and external water. Textural features identified in fine- and coarse-ash particles suggest that they were formed by brittle fragmentation both at the hot melt-water interface (forming active particles) as well as in the vicinity of the interaction interface. Brittle fragmentation may have occurred when hot melt rapidly penetrated abundant water-rich zones causing the melt to cool rapidly and rupture explosively.

Keywords: volcanic glass; fractal; shape; fragmentation; sideromelane; MFCI

  • [1] Heiken G.H., Wohletz K.H., Volcanic Ash, University of California Press, Berkeley, 1986 Google Scholar

  • [2] Zimanowski B., Wohletz K., Dellino P., Buttner R., The volcanic ash problem, J. Volcanol. Geoth. Res., 2003, 122, 1–5 http://dx.doi.org/10.1016/S0377-0273(02)00471-7CrossrefGoogle Scholar

  • [3] Buttner R., Dellino P., La Volpe L., Lorenz V., Zimanowski B., Thermohydraulic explosions in phreatomagmatic eruptions as evidenced by the comparison between pyroclasts and products from Molten Fuel Coolant Interaction experiments, J. Geophys. Res.-Sol. Ea., 2002, 107, 2277 http://dx.doi.org/10.1029/2001JB000511CrossrefGoogle Scholar

  • [4] Buttner R., Dellino P., Zimanowski B., Identifying magma-water interaction from the surface features of ash particles, Nature, 1999, 401, 688–690 http://dx.doi.org/10.1038/44364CrossrefGoogle Scholar

  • [5] Morrissey M.M., Zimanowski B., Wohletz K., Büttner R., Phreatomagmatic fragmentation. In: Sigurdsson H., Houghton B.F., McNutt S.R., Rymer H., Stix J., (Eds), Encyclopedia of Volcanoes, Academic Press, New York, 2000, 431–446 Google Scholar

  • [6] Zimanowski B., Buttner R., Lorenz V., Hafele H.G., Fragmentation of basaltic melt in the course of explosive volcanism, J. Geophys. Res.-Sol. Ea., 1997, 102, 803–814 http://dx.doi.org/10.1029/96JB02935CrossrefGoogle Scholar

  • [7] Frohlich G., Zimanowski B., Lorenz V., Explosive thermal interactions between molten lava and water, Exp. Therm. Fluid Sci., 1993, 7, 319–332 http://dx.doi.org/10.1016/0894-1777(93)90055-NCrossrefGoogle Scholar

  • [8] Buttner R., Dellino P., Raue H., Sonder I., Zimanowski B., Stress-induced brittle fragmentation of magmatic melts: Theory and experiments, J. Geophys. Res.-Sol. Ea., 2006, 111 Google Scholar

  • [9] Dellino P., LaVolpe L., Image processing analysis in reconstructing fragmentation and transportation mechanisms of pyroclastic deposits. The case of Monte Pilato-Rocche Rosse eruptions, Lipari (Aeolian islands, Italy), J. Volcanol. Geoth. Res., 1996, 71, 13–29 http://dx.doi.org/10.1016/0377-0273(95)00062-3CrossrefGoogle Scholar

  • [10] Heiken G.H., Wohletz K., Fragmentation processes in explosive volcanic eruptions. In: Fisher R.V., Smith G.A. (Eds.), Sedimentation in Volcanic Settings, Society for Sedimentary Geology, 1991, 19–26 Google Scholar

  • [11] Wohletz K.H., Explosive magma-water interactions: Thermodynamics, explosion mechanisms, and field studies, B. Volcanol., 1986, 48, 245–264 http://dx.doi.org/10.1007/BF01081754CrossrefGoogle Scholar

  • [12] Wohletz K.H., McQueen R.G., Experimental studies in hydromagmatic volcanism. In: Studies in Geophysics: Explosive volcanism: Inception, evolution and haz-ards, National Academy Press, Washington, 1984, 158–169 Google Scholar

  • [13] Wohletz K.H., Mechanisms of hydrovolcanic pyroclast formation - Grain-size, scanning electron-microscopy, and experimental studies, J. Volcanol. Geoth. Res., 1983, 17, 31–63 http://dx.doi.org/10.1016/0377-0273(83)90061-6CrossrefGoogle Scholar

  • [14] Dellino P., Kyriakopoulos K., Phreatomagmatic ash from the ongoing eruption of Etna reaching the Greek island of Cefalonia, J. Volcanol. Geoth. Res., 2003, 126, 341–345 http://dx.doi.org/10.1016/S0377-0273(03)00154-9CrossrefGoogle Scholar

  • [15] Dellino P., Liotino G., The fractal and multifractal dimension of volcanic ash particles contour: a test study on the utility and volcanological relevance, J. Volcanol. Geoth. Res., 2002, 113, 1–18 http://dx.doi.org/10.1016/S0377-0273(01)00247-5CrossrefGoogle Scholar

  • [16] Dellino P., Isaia R., La Volpe L., Orsi G., Statistical analysis of textural data from complex pyroclastic sequences: implications for fragmentation processes of the Agnano-Monte Spina Tephra (4.1 ka), Phlegraean Fields, southern Italy, B. Volcanol., 2001, 63, 443–461 Google Scholar

  • [17] Dellino P., La Volpe L., Structures and grain size distribution in surge deposits as a tool for modelling the dynamics of dilute pyroclastic density currents at La Fossa di Vulcano (Aeolian Islands, Italy), J. Volcanol. Geoth. Res., 2000, 96, 57–78 http://dx.doi.org/10.1016/S0377-0273(99)00140-7CrossrefGoogle Scholar

  • [18] Dellino P., Phreatomagmatic deposits: fragmentation, transportation and deposition mechanisms, Terra Nostra, 2000, 6, 99–105 Google Scholar

  • [19] Lautze N.C., Houghton, B.F., Linking variable explosion style and magma textures during 2002 at Stromboli volcano, Italy, B. Volcanol., 2007, 69, 445–460 http://dx.doi.org/10.1007/s00445-006-0086-1CrossrefGoogle Scholar

  • [20] Sable J.E., Houghton B.F., Del Carlo P., Coltelli M., Changing conditions of magma ascent and fragmentation during the Etna 122 BC basaltic Plinian eruption: Karoly Németh Evidence from clast microtextures, J. Volcanol. Geoth. Res., 2006, 158, 333–354 http://dx.doi.org/10.1016/j.jvolgeores.2006.07.006CrossrefGoogle Scholar

  • [21] Németh K., Monogenetic volcanic fields;their origin, sedimentary record, relationship with polygenetic volcanism, and how monogenetic they are. In: Canon-Tapia E., Szakacs A. (Eds.) What is a volcano? Geological Society of America, 2010 (in press) Google Scholar

  • [22] Kienle J., Kyle P.R., Self S., Motyka R.J., Lorenz V., Ukinrek Maars, Alaska.1. April 1977 Eruption Sequence, Petrology And Tectonic Setting, J. Volcanol. Geoth. Res., 1980, 7, 11–37 http://dx.doi.org/10.1016/0377-0273(80)90018-9Google Scholar

  • [23] Németh K., Cronin S.J., Charley D., Harrison M., Garae E., Exploding lakes in Vanuatu -“Surtseyan-style” eruptions witnessed on Ambae Island, Episodes, 2006, 29, 87–92 Google Scholar

  • [24] Maria A., Carey S., Using fractal analysis to quantitatively characterize the shapes of volcanic particles, J. Geophys. Res.-Sol. Ea., 2002, 107, 2283 http://dx.doi.org/10.1029/2001JB000822CrossrefGoogle Scholar

  • [25] Carey R.J., Houghton B.F., Sable J.E., Wilson C.J.N., Contrasting grain size and componentry in complex proximal deposits of the 1886 Tarawera basaltic Plinian eruption, B. Volcanolo., 2007, 69, 903–926 http://dx.doi.org/10.1007/s00445-007-0117-6CrossrefGoogle Scholar

  • [26] Carey S., Maria A., Sigurdsson H., Use offractal analysis for discrimination of particles from primary and reworked jokulhlaup deposits in SE Iceland, J. Volcanol. Geoth. Res., 2000, 104, 65–80 http://dx.doi.org/10.1016/S0377-0273(00)00200-6CrossrefGoogle Scholar

  • [27] Wada K., Fractal structure of heterogeneous ejecta from the Me-Akan Volcano, Eastern Hokkaido, Japan- Implications for mixing mechanism in a volcanic conduit, J. Volcanol. Geoth. Res., 1995, 66, 69–79 http://dx.doi.org/10.1016/0377-0273(94)00052-ICrossrefGoogle Scholar

  • [28] Shea T., Houghton B.F., Gurioli L., Cashman K.V., Hammer J.E., Hobden B.J., Textural studies of vesicles in volcanic rocks: An integrated methodology, J. Volcanol. Geoth. Res., 2010, (in press) CrossrefGoogle Scholar

  • [29] Dellino P., Lavolpe L., Fragmentation Versus Transportation Mechanisms in the Pyroclastic Sequence of Monte-Pilato Rocche-Rosse (Lipari, Italy), J. Volcanol. Geoth. Res. 1995, 64, 211–231 http://dx.doi.org/10.1016/0377-0273(94)00084-TCrossrefGoogle Scholar

  • [30] Wohletz K., Krinsley D.H., Scanning electron microscopy of basaltic hydromagmatic ash, Scan. Electron Micros., 1978, 1-16 Google Scholar

  • [31] Ersoy O., Aydar E., Gourgaud A., Bayhan H., Quantitative analysis on volcanic ash surfaces: Application of extended depth-of-field (focus) algorithm for light and scanning electron microscopy and 3D reconstruction, Micron, 2008, 39, 128–136 http://dx.doi.org/10.1016/j.micron.2006.11.010CrossrefGoogle Scholar

  • [32] Ersoy O., Gourgaud A., Aydar E., Chinga G., Thouret J.C., Quantitative scanning-electron microscope analysis of volcanic ash surfaces: Application to the 1982–1983 Galunggung eruption (Indonesia), Geol. Soc. Am. Bull., 2007, 119, 743–752 http://dx.doi.org/10.1130/B26048.1CrossrefGoogle Scholar

  • [33] Mangan M.T., Cashman K.V., The structure of basaltic scoria and reticulite and inferences for vesiculation, foam formation, and fragmentation in lava fountains, J. Volcanol. Geoth.. Res., 1996, 73, 1–18 http://dx.doi.org/10.1016/0377-0273(96)00018-2CrossrefGoogle Scholar

  • [34] Mangan M.T., Cashman K.V., Newman, S., Vesiculation of basaltic magma during eruption, Geology, 1993, 21, 157–160 http://dx.doi.org/10.1130/0091-7613(1993)021<0157:VOBMDE>2.3.CO;2CrossrefGoogle Scholar

  • [35] Allen S.R., Bryner V.F., Smith, I.E.M., Ballance, P.F., Facies analysis of pyroclastic deposits within basaltic tuff-rings of the Auckland volcanic field, New Zealand, New Zeal. J. Geol. Geoph., 1996, 39, 309–327 http://dx.doi.org/10.1080/00288306.1996.9514714CrossrefGoogle Scholar

  • [36] Von Veh M.W., Nemeth K., An assessment of the alignments of vents on geostatistical analysis in the Auckland Volcanic Field, New Zealand, Geomorphologie, 2009, 175-186 CrossrefGoogle Scholar

  • [37] Lorenz V., Kurszlaukis S., Root zone processes in the phreatomagmatic pipe emplacement model and consequences for the evolution of maar-diatreme volcanoes, J. Volcanol. Geoth. Res., 2007, 159, 4–32 http://dx.doi.org/10.1016/j.jvolgeores.2006.06.019CrossrefGoogle Scholar

  • [38] Lorenz V., Maar-diatreme volcanoes, their formation, and their setting in hard-rock or soft-rock environments, Geolines, 2003, 15, 72–83 Google Scholar

  • [39] Németh K., Budai T., Diatremes cut through the Triassic carbonate platforms in the Dolomites? Evidences from and around the Latemar, northern Italy, Episodes, 2009, 32, 74–83 Google Scholar

  • [40] Németh K., Martin U., Haller M.J., Alric V.L., Cenozoic diatreme field in Chubut (Argentina) as evidence of phreatomagmatic volcanism accompanied with extensive Patagonian plateau basalt volcanism? Episodes, 2007, 30, 217–223 Google Scholar

  • [41] White J.D.L., Maar-diatreme phreatomagmatism at Hopi Buttes, Navajo Nation (Arizona), USA, B. Volcanol., 1991, 53, 239–258 http://dx.doi.org/10.1007/BF00414522CrossrefGoogle Scholar

  • [42] Lorenz V., Maars and diatremes of phreatomagmatic origin: a review, Transactions of the Geological Society of South Africa, 1985, 88, 459–470 Google Scholar

  • [43] Martin U., Németh K., Mio/Pliocene phreatomagmatic volcanism in the western Pannonian Basin, Geologica Hungarica Series Geologica, Geological Institute of Hungary, Budapest, 2004 Google Scholar

  • [44] Suhr P., Goth K., Lorenz V., Long lasting subsidence and deformation in and above maar-diatreme volcanoes — a never ending story, Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 2006, 157, 491–511 http://dx.doi.org/10.1127/1860-1804/2006/0157-0491CrossrefGoogle Scholar

  • [45] Harangi S., Neogene magmatism in the Alpine-Pannonian Transition Zone — a model for melt generation in a complex geodynamic setting, Acta Vulcanologica, 2001, 13, 25–39 Google Scholar

  • [46] Seghedi I., Downes H., Szakacs A., Mason P.R.D., Thirlwall M.F., Rosu E., Pecskay Z., Marton E., et al., Neogene-Quaternary magmatism and geodynam-Volcanic glass textures, shape characteristics and compositions of phreatomagmatic rock units from the Western Hungarian monogenetic volcanic fields and their implications for magma fragmentation ics in the Carpathian-Pannonian region: a synthesis, Lithos, 2004, 72, 117–146 http://dx.doi.org/10.1016/j.lithos.2003.08.006CrossrefGoogle Scholar

  • [47] Szabó C., Harangi S., Csontos L., Review of Neogene and Quaternary volcanism of the Carpathian Pannonian Region, Tectonophysics, 1992, 208, 243–256 http://dx.doi.org/10.1016/0040-1951(92)90347-9CrossrefGoogle Scholar

  • [48] Cloetingh S., Lankreijer A., Lithospheric memory and stress field controls on polyphase deformation of the Pannonian basin-Carpathian system, Mar. Petrol. Geol., 2001, 18, 3–11 http://dx.doi.org/10.1016/S0264-8172(00)00040-4CrossrefGoogle Scholar

  • [49] Bada G., Horváth F., On the structure and tectonic evolution of the Pannonian basin and surrounding orogens. Acta Geologica Hungarica, 2001, 44, 301–327 Google Scholar

  • [50] Horvath F., Royden L., The Pannonian Basin — a Study in Basin Evolution — Reply, Am. Assoc. Petr. Geol. B., 1990, 74, 1281–1282 Google Scholar

  • [51] Bada G., Horvath F., Gerner P., Fejes I., Review of the present-day geodynamics ofthe Pannonian basin: progress and problems, J. Geodyn., 1999, 27, 501–527 http://dx.doi.org/10.1016/S0264-3707(98)00013-1CrossrefGoogle Scholar

  • [52] Bada G., Horvath F., Cloetingh S., Coblentz D.D., Toth T., Role of topography-induced gravitational stresses in basin inversion: The case study of the Pannonian basin, Tectonics, 2001, 20, 343–363 http://dx.doi.org/10.1029/2001TC900001CrossrefGoogle Scholar

  • [53] Pécskay Z., Lexa J., Szakács A., Balogh K., Seghedi I., Konecny V., Kovács M., Márton E., et al., Space and time distribution of Neogene-Quaternary volcanism in the Carpatho-Pannonian region, Acta Vulcanologica, 1995, 7, 15–28 Google Scholar

  • [54] Balogh K., Pécskay Z., K/Ar and Ar/Ar geochronological studies in the Pannonian-Carpathians-Dinarides (PANCARDI) region, Acta Geologica Academiae Scientiarum Hungaricae, 2001, 44, 281–301 Google Scholar

  • [55] Szabó C., Falus G., Zajácz Z., Kovács I., Bali E., Composition and evolution of lithosphere beneath the Carpathian-Pannonian Region: a review, Tectonophysics, 2004, 393, 119–137 http://dx.doi.org/10.1016/j.tecto.2004.07.031CrossrefGoogle Scholar

  • [56] Falus G., Szabó C., Vaselli O., Mantle upwelling within the Pannonian Basin: evidence from xenolith lithology and mineral chemistry, Terra Nova, 2000, 12, 295–302 http://dx.doi.org/10.1046/j.1365-3121.2000.00313.xCrossrefGoogle Scholar

  • [57] Németh K., Martin U., Large hydrovolcanic field in the Pannonian Basin: general characteristics of the Bakony- Balaton Highland Volcanic Field, Hungary, Acta Vulcanologica, 1999, 11, 271–282 Google Scholar

  • [58] Balogh K., Németh K., Evidence for the neogene small-volume intracontinental volcanism in western Hungary: K/Ar geochronology of the Tihany Maar volcanic complex, Geologica Carpathica, 2005, 56, 91–99 Google Scholar

  • [59] Balogh K., Itaya T., Németh K., Martin U., Wijbrans J., Than N.X., Study of controversial K/Ar and 40Ar/39Ar ages of the Pliocene alkali basalt of Hegyestii, Balaton Highland, Hungary: a progress report. Mineralia Slovaca, 2005, 37, 298–301 Google Scholar

  • [60] Wijbrans J., Németh K., Martin U., Balogh K., Ar-40/Ar-39 geochronology of Neogene phreatomagmatic volcanism in the western Pannonian Basin, Hungary, J. Volcanol. Geoth. Res., 2007, 164, 193–204 http://dx.doi.org/10.1016/j.jvolgeores.2007.05.009CrossrefGoogle Scholar

  • [61] Németh K., Martin U., Late Miocene paleo-geomorphology of the Bakony-Balaton Highland Volcanic Field (Hungary) using physical volcanology data, Zeitschrift für Geomorphologie, 1999, 43, 417–438. Google Scholar

  • [62] Martin U., Németh K., Eruptive and depositional history of a Pliocene tuff ring that developed in a fluviolacustrine basin: Kissomlyó Volcano (Western Hungary), J. Volcanol. Geoth. Res., 2005, 147, 342–356 http://dx.doi.org/10.1016/j.jvolgeores.2005.04.019CrossrefGoogle Scholar

  • [63] Sacchi M., Horvth F., Magyari O., Role of unconformity-bounded units in the stratigraphy of the continental record; a case study from the late Miocene of the western Pannonian Basin, Hungary. In: Durand B., Jolivet L., Horváth F., Ranne M., (Eds.), The Mediterranean basins; Tertiary extension within the Alpine Orogen., Geological Society of London, London, 1999, 357–390 Google Scholar

  • [64] Magyar I., Geary D.H., Muller P., Paleogeographic evolution of the Late Miocene Lake Pannon in Central Europe, Palaeogeogr. Palaeoec., 1999, 147, 151–167 http://dx.doi.org/10.1016/S0031-0182(98)00155-2CrossrefGoogle Scholar

  • [65] Auer A., Martin U., Németh K., The Fekete-hegy (Balaton Highland Hungary) “soft-substrate” and “hard-substrate” maar volcanoes in an aligned volcanic complex - Implications for vent geometry, subsurface stratigraphy and the palaeoenvironmental setting, J. Volcanol. Geoth. Res., 2007, 159, 225–245 http://dx.doi.org/10.1016/j.jvolgeores.2006.06.008CrossrefGoogle Scholar

  • [66] Németh K., Martin U., Harangi S., Miocene phreatomagmatic volcanism at Tihany (Pannonian Basin, Hungary), J. Volcanol. Geoth. Res., 2001, 111, 111–135 http://dx.doi.org/10.1016/S0377-0273(01)00223-2CrossrefGoogle Scholar

  • [67] Németh K., Martin U., Csillag G., Erosion rate calculation based on eroded monogenetic alkaline basaltic volcanoes ofthe Mio/Pliocene Bakony-Balaton Highland Volcanic Field, Hungary, Geolines, 2003, 15, 93–97 Google Scholar

  • [68] Martin U., Németh K., Blocky versus fluidal peperite textures developed in volcanic conduits, vents and crater lakes of phreatomagmatic volcanoes in Mio/Pliocene volcanic fields of Western Hungary, J. Volcanol. Geoth. Res., 2007, 159, 164–178 http://dx.doi.org/10.1016/j.jvolgeores.2006.06.010CrossrefGoogle Scholar

  • [69] Németh K., Martin U., Csillag G., Lepusztult maar/diatrema szerkezetek a Bakony-Balaton Felvidék Vulkáni Területröl (Eroded maar/diatrema structures from the Bakony-Balaton Highland Volcanic Field), Annual Report of the Geological Institute of Hungary, 2003, 83–99, (in Hungarian) Karoly Németh Google Scholar

  • [70] Petrelli M., Poli G., Perugini D., Peccerillo A., Petrograph: a New Software to Visualize, Model, and Present Geochemical Data in Igneous Petrology, Geochem. Geophys. Geosyst., 2005, 6 (Q07011), DOI 10.1029/2005GC000932. CrossrefGoogle Scholar

  • [71] Buttner R., Zimanowski B., Mohrholz C.O., Kummel R., Analysis of thermohydraulic explosion energetics, J. Appl. Phys., 2005, 98, 043524 http://dx.doi.org/10.1063/1.2033149CrossrefGoogle Scholar

  • [72] Zimanowski B., Buttner R., Lorenz V., Premixing of magma and water in MFCI experiments, B. Volcanol., 1997, 58, 491–495 http://dx.doi.org/10.1007/s004450050157CrossrefGoogle Scholar

  • [73] Maria A., Carey S., Quantitative discrimination of magma fragmentation and pyroclastic transport processes using the fractal spectrum technique, J. Volcanol. Geoth. Res., 2007, 161, 234–246 http://dx.doi.org/10.1016/j.jvolgeores.2006.12.006CrossrefGoogle Scholar

  • [74] Mandelbrot B.B., How long is the coast of Britain? Statistical self-similarity and fractional dimensions, Science, 1967, 156, 636–638 http://dx.doi.org/10.1126/science.156.3775.636CrossrefGoogle Scholar

  • [75] Mandelbrot B.B., Multifractal power law distributions: Negative and critical dimensions and other “anomalies,” explained by a simple example, J. Stat. Phys., 2003, 110, 739–774 http://dx.doi.org/10.1023/A:1022159802564CrossrefGoogle Scholar

  • [76] Kindratenko V.V., VanEspen P.J.M., Treiger B.A., Van-Grieken R.E., Characterisation of the shape of microparticles via fractal and Fourier analyses of scanning electron microscope images, Mikrochimica Acta, 13, 1996, 355–361 Google Scholar

  • [77] Ouillon G., Sornette D., Unbiased multifractal analysis: Application to fault patterns, Geophys. Res. Lett., 1996, 23, 3409–3412 http://dx.doi.org/10.1029/96GL02379CrossrefGoogle Scholar

  • [78] Clark N., Three techniques for implementing digital fractal analysis of particle shapes, Powder Technology, 1986, 46, 132139 http://dx.doi.org/10.1016/0032-5910(86)80097-3CrossrefGoogle Scholar

  • [79] Clark N.N., Maeder A.J., Reilly S., Data Scatter in Richardson Plots, Particle & Particle Systems Characterization, 1992, 9, 9–18 http://dx.doi.org/10.1002/ppsc.19920090103CrossrefGoogle Scholar

  • [80] Orford J.D., Whalley W.B., The use of the fractal dimension to quantify the morphology of irregular-shaped particles, Sedimentology, 1983, 30, 655–668 http://dx.doi.org/10.1111/j.1365-3091.1983.tb00700.xCrossrefGoogle Scholar

  • [81] Heiken G.H., An atlas of volcanic ash., Smithsonian Earth Science Contributions, Smithsonian Press, Washington, 1974, 12, 1–101 Google Scholar

About the article

Published Online: 2010-09-01

Published in Print: 2010-09-01

Citation Information: Open Geosciences, Volume 2, Issue 3, Pages 399–419, ISSN (Online) 2391-5447, DOI: https://doi.org/10.2478/v10085-010-0015-6.

Export Citation

© 2010 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

D. Nurfiani and C. Bouvet de Maisonneuve
Journal of Volcanology and Geothermal Research, 2017
Roberto Isaia, Stefano Vitale, Maria Giulia Di Giuseppe, Enrico Iannuzzi, Francesco D’Assisi Tramparulo, and Antonio Troiano
Geological Society of America Bulletin, 2015, Volume 127, Number 9-10, Page 1485
Natalia Pardo, Shane J. Cronin, Károly Németh, Marco Brenna, C. Ian Schipper, Eric Breard, James D.L. White, Jonathan Procter, Bob Stewart, Javier Agustín-Flores, Anja Moebis, Anke Zernack, Gábor Kereszturi, Gert Lube, Andreas Auer, Vince Neall, and Clel Wallace
Journal of Volcanology and Geothermal Research, 2014, Volume 286, Page 397
Károly Németh and Shane J. Cronin
Journal of Volcanology and Geothermal Research, 2011, Volume 201, Number 1-4, Page 194

Comments (0)

Please log in or register to comment.
Log in