Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

IMPACT FACTOR 2017: 0.696
5-year IMPACT FACTOR: 0.736

CiteScore 2017: 0.89

SCImago Journal Rank (SJR) 2017: 0.323
Source Normalized Impact per Paper (SNIP) 2017: 0.674

Open Access
See all formats and pricing
More options …

Is Efate (Vanuatu, SW Pacific) a result of subaerial or submarine eruption? An alternative model for the 1 Ma Efate Pumice Formation

Robert Stewart / Karoly Németh / Shane Cronin
Published Online: 2010-09-01 | DOI: https://doi.org/10.2478/v10085-010-0020-9


The Efate Pumice Formation (EPF) is a trachydacitic volcaniclastic succession widespread in the central part of Efate Island and also present on Hat and Lelepa islands to the north. The volcanic succession has been inferred to result from a major, entirely subaqueous explosive event north of Efate Island. The accumulated pumice-rich units were previously interpreted to be subaqueous pyroclastic density current deposits on the basis of their bedding, componentry and stratigraphic characteristics. Here we suggest an alternative eruptive scenario for this widespread succession. The major part of the EPF is distributed in central Efate, where pumiceous pyroclastic rock units several hundred meters thick are found within fault scarp cliffs elevated about 800 m above sea level. The basal 200 m of the pumiceous succession is composed of massive to weakly bedded pumiceous lapilli units, each 2-3 m thick. This succession is interbedded with wavy, undulatory and dune bedded pumiceous ash and fine lapilli units with characteristics of co-ignimbrite surges and ground surges. The presence of the surge beds implies that the intervening units comprise a subaerial ignimbrite-dominated succession. There are no sedimentary indicators in the basal units examined that are consistent with water-supported transportation and/or deposition. The subaerial ignimbrite sequence of the EPF is overlain by a shallow marine volcaniclastic Rentanbau Tuffs. The EPF is topped by reef limestone, which presumably preserved the underlying EPF from erosion. We here propose that the EPF was formed by a combination of initial subaerial ignimbrite-forming eruptions, followed by caldera subsidence. The upper volcaniclastic successions in our model represent intra-caldera pumiceous volcaniclastic deposits accumulated in a shallow marine environment in the resultant caldera. The present day elevated position of the succession is a result of a combination of possible caldera resurgence and ongoing arc-related uplift in the region.

Keywords: pumice; rhyolite; dacite; explosive; caldera; subaqueous; ignimbrite; phreatomagmatic; regional uplift; subduction

  • [1] Lloyd E.D., Nathan S., Smith I.E.M., Stewart R.B., Volcanic history of Macauley island, Kermadec ridge, New Zealand, New Zeal. J. Geol. Geop., 1996, 39, 295–308 CrossrefGoogle Scholar

  • [2] Smith I.E.M., Stewart R.B., Price R.C., The petrology of a large intra-oceanic silicic eruption: the Sandy Bay Tephra, Kermadec Arc, Southwest Pacific, J. Volcanol. Geoth. Res., 2003, 124, 173–194 http://dx.doi.org/10.1016/S0377-0273(03)00040-4CrossrefGoogle Scholar

  • [3] Leat P.T., Larter R.D., Millar I.L., Silicic magmas of Protector Shoal, South Sandwich arc: indicators of generation of primitive continental crust in an island arc, Geol. Mag., 2007, 144, 179–190 http://dx.doi.org/10.1017/S0016756806002925CrossrefGoogle Scholar

  • [4] Graham i.J., Reyes A.G., Wright i.C., Peckett K.M., Smith I.E.M., Arculus R.J., Structure and petrology of newly discovered volcanic centers in the northern Kermadec-southern Tofua arc, South Pacific Ocean, J. Geophys. Res.-Sol. Ea., 2008, 113(B8), doi: B08s02 10.1029/2007jb005453 CrossrefGoogle Scholar

  • [5] Bachmann O., The petrologic evolution and preeruptive conditions of the rhyolitic Kos Plateau Tuff (Aegean arc), Centr. Eur. J. Geosci., 2010, doi: 10.2478/v10085-010-0009-4, in press CrossrefGoogle Scholar

  • [6] Pelletier B., Calmant S., Pillet R., Current tectonics of the Tonga New Hebrides region, Earth Planet. Sc. Lett., 1998, 164, 263–276 Google Scholar

  • [7] Pelletier B., Louat R., Seismotectonics And Present-Day Relative Plate Motions in The Tonga-Lau And Kermadec-Havre Region, Tectonophysics, 1989, 165, 237–250 http://dx.doi.org/10.1016/0040-1951(89)90049-8CrossrefGoogle Scholar

  • [8] Dubois J., Deplus C., Diament M., Daniel J, Collot J.Y., Subduction Of The Bougainville Seamount (Vanuatu) — Mechanical And Geodynamic implications, Tectonophysics, 1988, 149, 111–119 http://dx.doi.org/10.1016/0040-1951(88)90121-7CrossrefGoogle Scholar

  • [9] Lafoy Y., Dupont J., Missegue F., Lesuave R., Pautot G, Effects Of The Loyalty Ridge — New Hebrides Arc Collision On The Southern Ends Of The New-Caledonia And Loyalty Ridges, Cr. Acad. Des Sci. ii, 1995, 320, 1101–1108 Google Scholar

  • [10] Van de Beuque S., Auzende J.M., Lafoy Y., Missegue F., Tertiary tectonic and volcanism on the Lord Howe Rise (South West Pacific), Cr. Acad. Des Sci. ii, 1998, 326, 663–669 Google Scholar

  • [11] Sdrolias M., Muller R.D., Mauffret A., Bernardel G., Enigmatic formation of the Norfolk Basin, SW Pacific: A plume influence on back-arc extension. Geochem. Geophy. Geosy., 2004, 5. Q06005, doi:10.1029/2003GC000643 CrossrefGoogle Scholar

  • [12] Greene H.G., Collot J.-Y., Fisher M.A., Crawford A., Neogene tectonic evolution of the New Hebrides island arc: a review incorporating ODP drilling result. in: Proceeding of the Ocean Drilling Program, Scientific Results, 134. Ocean Drilling Program, Greene, H.G., Collot J.Y., Stokking L.B., (Eds.) 1994, ODP: College Station, Texas, 19–46 Google Scholar

  • [13] Meffre S., Crawford A.J., Collision tectonics in the New Hebrides arc (Vanuatu), isl. Arc, 2001, 10, 33–50 http://dx.doi.org/10.1046/j.1440-1738.2001.00292.xCrossrefGoogle Scholar

  • [14] Collot J.Y., Lallemand S., Pelletier B., Eissen J.P., Glacon G., Fisher M.A., Greene H.G., Boulin J., et al., Geology Of The Dentrecasteaux-New Hebrides Arc Collision Zone — Results From A Deep Submersible Survey, Tectonophysics, 1992, 212, 213–241 http://dx.doi.org/10.1016/0040-1951(92)90292-ECrossrefGoogle Scholar

  • [15] Daniel J., Collot J.Y., Monzier M., Pelletier B., Butscher J., Deplus C., Dubois J., Gerard M., et al., Subduction And Collisions Along The New-Hebrides island-Arc (Vanuatu) — Preliminary-Results Of The Seapso Cruise (Leg-i)., Cr. Acad. Des Sci. ii, 1986, 303, 805–810 Google Scholar

  • [16] Recy J., Charvis P., Ruellan E., Monjaret M.C., Gerard M., Auclair G., Baldassari C., Boirat J.M., et al, Tectonics And Submarine Volcanism in The New Hebrides Back Arc Area (Vanuatu, Southwest Pacific) — Preliminary-Results Of The Seapso Cruise Leg-ii Of The R/V Jean-Charcot. Cr. Acad. Des Sci. ii, 1986, 303, 685–690 Google Scholar

  • [17] Chatelain J.L., Molnar P., Prevot R., isacks B., Detachment Of Part Of The Downgoing Slab And Uplift Of The New Hebrides (Vanuatu) islands, Geophys. Res. Lett., 1992, 19(14), 1507–1510 http://dx.doi.org/10.1029/92GL01389CrossrefGoogle Scholar

  • [18] Chatelain, J.L., Guillier, B., Gratier, J.P., Unfolding The Subducting Plate in The Central New Hebrides island-Arc — Geometrical Argument For Detachment Of Part Of The Downgoing Slab, Geophys. Res. Lett., 1993, 20, 655–658 http://dx.doi.org/10.1029/93GL00681CrossrefGoogle Scholar

  • [19] Peate, D.W., Pearce, J.A., Hawkesworth, C.J., Colley, H., Edwards, C.M.H., Hirose, K., Geochemical variations in Vanuatu arc lavas: the role of subducted material and a variable mantle wedge composition, J. Petrol., 1997, 38, 1331–1358 http://dx.doi.org/10.1093/petrology/38.10.1331CrossrefGoogle Scholar

  • [20] Raos A.M., McPhie J., The submarine record of a large-scale explosive eruption in the Vanuatu Arc: ∼1 Ma Efate Pumice Formation. in: White J.D.L., Smellie J.L., Clague D.A. (Eds.) Explosive subaqueous volcanism, American Geophysical Union, Washington D.C., 2003, 273–283 Google Scholar

  • [21] Bath A.H., Burgess W.G., Carney J.N., The chemistry and hydrology of thermal springs on Efate, Vanuatu, SW Pacific. Geothermics, 1986, 15, 277–294 http://dx.doi.org/10.1016/0375-6505(86)90105-7CrossrefGoogle Scholar

  • [22] Carney J.N., Efate geothermal project, Phase 1. Geology and reconnaissance hydrology. Report of the institute of Geological Sciences (Overseas Division), Keyworth, UK, 1982, 82/11 Google Scholar

  • [23] Ash R.P., Carney J.N., Macfarlane A., Geology of Efate and offshore islands. New Hebrides Condominium Geological Survey, 1978 Google Scholar

  • [24] Raos A.M., Crawford A.J., Basalts from the Efate island Group, central section of the Vanuatu arc, SW Pacific: geochemistry and petrogenesis. J. Volcanol. Geoth. Res., 2004, 134, 35–56 http://dx.doi.org/10.1016/j.jvolgeores.2003.12.004CrossrefGoogle Scholar

  • [25] Taylor F.W., Frohlich C., Lecolle J., Strecker M., Analysis of partially emerged corals and reef terraces in the Central Vanuatu Arc — Comparison of contemporary coseismic and nonseismic with Quaternary vertical movements. J. Geophys. Res.-Solid, 1987, 92(B6), 4905–4933 http://dx.doi.org/10.1029/JB092iB06p04905CrossrefGoogle Scholar

  • [26] Lecolle J.F., Bokilo J.E., Bernat M., Quaternary uplift and tectonism of the ile-Efate, New-Hebrides (Vanuatu) island-Arc — Dating of uplifted terraces by the U/Th method. Mar. Geol., 1990, 94, 251–270 http://dx.doi.org/10.1016/0025-3227(90)90072-RCrossrefGoogle Scholar

  • [27] Ash R.P., Carney J.N., Macfarlane A., Geology of Efate and offshore islands. New Hebrides Condominium Geological Survey, 1978 Google Scholar

  • [28] Allen S.R., McPhie J., Water-settling and resedimentation of submarine rhyolitic pumice at Yali, eastern Aegean, Greece, J. Volcanol. Geoth. Res., 2000, 95, 285–307 http://dx.doi.org/10.1016/S0377-0273(99)00127-4CrossrefGoogle Scholar

  • [29] Doyle M.G., McPhie J., Shallow-water microbialite-volcaniclastic facies association in the Cambro-Ordovician Mt Windsor Subprovince, Australia. Aust. J. of Earth Sci., 2001, 48, 815–831 Google Scholar

  • [30] Cas R., Wright J., Volcanic Successions, Modern and Ancient, Allen and Unwin, London Boston Sydney Wellington, 1987 Google Scholar

  • [31] Fisher R.V., Schmincke H.-U., Pyroclastic Rocks, Springer, Heidelberg, 474, 1984 Google Scholar

  • [32] Wilson C.J.N., Houghton B.F., McWilliams M.O., Lanphere M.A., Weaver S.D., Briggs R.M., Volcanic and structural evolution of Taupo Volcanic Zone, New-Zealand — A review, J. Volcanol. Geoth. Res., 1995, 68, 1–28 http://dx.doi.org/10.1016/0377-0273(95)00006-GCrossrefGoogle Scholar

  • [33] Manville V., Wilson C.J.N., The 26.5 ka Oruanui eruption, New Zealand: a review of the roles of volcanism and climate in the post-eruptive sedimentary response, New Zeal. J. Geol. Geop., 2004, 47, 525–547 CrossrefGoogle Scholar

  • [34] Allen S.R., Reconstruction of a major caldera-forming eruption from pyroclastic deposit characteristics: Kos Plateau Tuff, eastern Aegean Sea, J. Volcanol. Geoth. Res., 2001, 105, 141–162 http://dx.doi.org/10.1016/S0377-0273(00)00222-5CrossrefGoogle Scholar

  • [35] Yokoyama, S., Rapid formation of river terraces in non-welded ignimbrite along the Hishida River, Kyushu, Japan. Geomorphology, 1999, 30, 291–304 http://dx.doi.org/10.1016/S0169-555X(99)00037-9CrossrefGoogle Scholar

  • [36] Allen S.R., Stadlbauer E., Keller J., Stratigraphy of the Kos Plateau Tuff: product of a major Quaternary explosive rhyolitic eruption in the eastern Aegean, Greece, int. J. Earth Sci., 1999, 88, 132–156 http://dx.doi.org/10.1007/s005310050251CrossrefGoogle Scholar

  • [37] Maeno F., Taniguchi H., Spatiotemporal evolution of a marine caldera-forming eruption, generating a low-aspect ratio pyroclastic flow, 7.3 ka, Kikai caldera, Japan: implication from near-vent eruptive deposits, J. Volcanol. Geoth. Res., 2007, 167, 212–238 http://dx.doi.org/10.1016/j.jvolgeores.2007.05.003CrossrefGoogle Scholar

  • [38] Cas R.A.F., Wright J.V., Subaqueous pyroclastic flows and ignimbrites — An assessment, B. Volcanol., 1991, 53, 357–380 http://dx.doi.org/10.1007/BF00280227CrossrefGoogle Scholar

  • [39] Sparks R.S.J., Self S., Walker G.P.L., Products of ignimbrite eruptions, Geology, 1973, 1, 115–118 http://dx.doi.org/10.1130/0091-7613(1973)1<115:POIE>2.0.CO;2CrossrefGoogle Scholar

  • [40] Sparks R.S.J., Grain size variations in ignimbrites and implications for the transport of pyroclastic flows, B. Volcanol., 1976, 23, 147–188 Google Scholar

  • [41] Fisher R.V., Smith A.L., Wright J.V., Roobol M.J., ignimbrite veneer deposits or pyroclastic surge deposits. Nature, 1980, 286, 912–912 http://dx.doi.org/10.1038/286912a0CrossrefGoogle Scholar

  • [42] Walker G.P.L., Wilson C.J.N., Froggatt P.C., Fines-depleted ignimbrite in New-Zealand — The product of a turbulent pyroclastic flow, Geology, 1980, 8, 245–249 http://dx.doi.org/10.1130/0091-7613(1980)8<245:FIINZT>2.0.CO;2CrossrefGoogle Scholar

  • [43] Cas R.A.F., Wright J.V., Subaqueous pyroclastic flows and ignimbrites: an assessment, B. Volcanol., 1991, 53, 357–380 http://dx.doi.org/10.1007/BF00280227CrossrefGoogle Scholar

  • [44] Kokelaar P., Busby C., Subaqueous explosive eruption and welding of pyroclastic deposits, Science, 1992, 257, 196–200 http://dx.doi.org/10.1126/science.257.5067.196CrossrefGoogle Scholar

  • [45] Cas R.A.F., Submarine volcanism — eruption styles, products, and relevance to understanding the host-rock successions to volcanic-hosted massive sulfide deposits, Econ. Geol., 1992, 87, 511–541 http://dx.doi.org/10.2113/gsecongeo.87.3.511CrossrefGoogle Scholar

  • [46] White J.D.L., Subaqueous eruption-fed density currents and their deposits, Precambrian Res., 2000, 101, 87–109 http://dx.doi.org/10.1016/S0301-9268(99)00096-0CrossrefGoogle Scholar

  • [47] Brown R.J., Barry T.L., Branney M.J., Pringle M.S., Bryan S.E., The Quaternary pyroclastic succession of southeast Tenerife, Canary islands: explosive eruptions, related caldera subsidence, and sector collapse, Geol. Mag., 2003, 140, 265–288 http://dx.doi.org/10.1017/S0016756802007252CrossrefGoogle Scholar

  • [48] Freundt, A., Entrance of hot pyroclastic flows into the sea: experimental observations, B. Volcanol., 2003, 65, 144–164 Google Scholar

  • [49] Woodroffe C.D., Sea level studies — Coral Records., in: Elias S.A., (Ed.). Encyclopedia ofQuaternary Science, Elsevier Ltd.: Amsterdam, 2007, 3006–3015 http://dx.doi.org/10.1016/B0-44-452747-8/00139-3CrossrefGoogle Scholar

  • [50] Chen J.K., Taylor F.W., Edwards R.L., Cheng H., Burr G.S., Recent emerged reef terraces of the Yenkahe Resurgent Block, Tanna, Vanuatu — implications for volcanic, landslide and tsunami hazards, J. Geol., 1995, 103, 577–590 http://dx.doi.org/10.1086/629777CrossrefGoogle Scholar

  • [51] Meffre S., Crawford A., Collision tectonics in the New Hebrides arc (Vanuatu). isl. Arc, 2001, 10, 33–50 http://dx.doi.org/10.1046/j.1440-1738.2001.00292.xCrossrefGoogle Scholar

  • [52] Kruger J., Sharma A., High-Resolution Bathymetric Survey of Efate, Fieldwork undertaken from 2 to 27 August 2003. EU EDF 8 — SOPAC Project Report (Reducing Vulnerability of Pacific ACP States), 2008, 110, 1–232 Google Scholar

  • [53] Krueger J., Sharma A., High-resolution bathymetric survey of Efate. Vanuatu Technical Report, 2008, EU EDF 8 - SOPAC Project Report 110 (Reducing vulnerability of Pacific ACP states) Google Scholar

  • [54] Monzier M., Robin C., Eissen J.P., Kuwae (Approximate-to-1425 AD) — The forgotten caldera, J. Volcanol. Geoth. Res., 1994, 59, 207–218 http://dx.doi.org/10.1016/0377-0273(94)90091-4CrossrefGoogle Scholar

  • [55] Hoffmann A., Looking to Epi: further consequences of the Kuwae eruption, Central Vanuatu, AD 1452, Indo-Pacific Prehistory Association Bulletin, 2006, 26, 62–71 Google Scholar

  • [56] Gao C., Robock A., Self S., Witter J.B., Steffenson J.P., Clausen H.B., Siggaard-Andersen M.-L., Johnsen S., aet al., The 1452 or 1453 A.D. Kuwae eruption signal derived from multiple ice core records: Greatest volcanic sulfate event of the past 700 years, J. Geophys. Res., 2006, 111(D12107), doi: 10.1029/2005JD006710 Google Scholar

  • [57] Witter J.B., Self S., The Kuwae (Vanuatu) eruption of AD 1452: potential magnitude and volatile release, B. Volcanol., 2007, 69, 301–318 http://dx.doi.org/10.1007/s00445-006-0075-4CrossrefGoogle Scholar

  • [58] Németh K., Cronin S.J., White J.D.L., Kuwae caldera and climate confusion, The Open Geology Journal (Bentham Sciences), 2007, 1, 7–11, doi: 10.2174/1874262900701010007 CrossrefGoogle Scholar

  • [59] Gibbons J.R.H., Clunie F.G.A.U., Sea level changes and Pacific prehistory: New insight into early human settlement of Oceania, The Journal of Pacific History, 1986, 21, 58–82 http://dx.doi.org/10.1080/00223348608572529CrossrefGoogle Scholar

  • [60] Daly R.A., The glacial-control theory of coral reefs, P. Am. Acad. Arts Sci., 1915, 51, 155–251 Google Scholar

  • [61] Murray-Wallace C.V., Sea level studies — Eustatic sea-level changes, glacial-interglacial cycles. in: Elias S.A., (Ed.) Encyclopedia of Quaternary Science, Elsevier Ltd.: Amsterdam, 2007, 3024–3034 http://dx.doi.org/10.1016/B0-44-452747-8/00140-XCrossrefGoogle Scholar

  • [62] Veeh H.H., Th230/U238 and U234/U238 ages of Pleistocene high sea level stand, J. Geophys. Res., 1966, 71, 3379–3386 Google Scholar

  • [63] Gibbard P., Cohen K.M., Global chronostratigraphical correlation table for the last 2.7 million years, Episodes, 2008, 31, 243–247 Google Scholar

  • [64] Pécskay Z., Lexa J., Szakács A., Balogh K., Seghedi I., Konecny V., Kovács M., Márton E., et al., Space and time distribution of Neogene-Quaternary volcanism in the Carpatho-Pannonian region. Acta Vulcanologica, 1995, 7, 15–28 Google Scholar

  • [65] Seghedi I., Downes H., Szakacs A., Mason P.R.D., Thirlwall M.F., Rosu E., Pecskay Z., Marton E., et al., Neogene-Quaternary magmatism and geodynamics in the Carpathian-Pannonian region: a synthesis, Lithos, 2004, 72, 117–146 http://dx.doi.org/10.1016/j.lithos.2003.08.006CrossrefGoogle Scholar

  • [66] Szakács A., Zelenka T., Marton E., Pécskay Z., Póka T., Seghedi i., Miocene acidic explosive volcanism in the Bükk Foreland, Hungary;identifying eruptive sequences and searching for source locations, Acta Geologica Hungarica, 1998, 41, 413–435 Google Scholar

  • [67] Harangi S., Neogene magmatism in the Alpine-Pannonian Transition Zone — a model for melt generation in a complex geodynamic setting, Acta Vulcanologica, 2001, 13, 25–39 Google Scholar

  • [68] Szabó C., Harangi S., Csontos L., Review of Neogene and Quaternary Volcanism ofthe Carpathian Pannonian Region, Tectonophysics, 1992, 208, 243–256 http://dx.doi.org/10.1016/0040-1951(92)90347-9CrossrefGoogle Scholar

  • [69] Harangi S., Mason P.R.D., Lukacs R., Correlation and petrogenesis of silicic pyroclastic rocks in the Northern Pannonian Basin, Eastern-Central Europe: in situ trace element data of glass shards and mineral chemical constraints, J. Volcanol. Geoth. Res., 2005, 143, 237–257 http://dx.doi.org/10.1016/j.jvolgeores.2004.11.012CrossrefGoogle Scholar

  • [70] Bada G., Horváth F., On the structure and tectonic evolution of the Pannonian basin and surrounding orogens, Acta Geologica Hungarica, 2001, 44, 301–327 Google Scholar

  • [71] Cloetingh S., Lankreijer A., Nemcok M., Neubauer F., Horvath F., Sedimentary basins and hydrocarbon habitat at the margin of the Pannonian basin system: introduction, Mar. Petrol. Geol., 2001, 18, 1–2 http://dx.doi.org/10.1016/S0264-8172(00)00039-8CrossrefGoogle Scholar

  • [72] Csato I., Neogene Sequences in the Pannonian Basin, Hungary, Tectonophysics, 1993, 226, 377–400 http://dx.doi.org/10.1016/0040-1951(93)90128-7CrossrefGoogle Scholar

  • [73] Horvath F., Towards A Mechanical Model For The Formation Of The Pannonian Basin, Tectonophysics, 1993, 226, 333–357 http://dx.doi.org/10.1016/0040-1951(93)90126-5CrossrefGoogle Scholar

  • [74] Juhász E., Kovacs L.O., Muller P., Toth-Makk A., Phillips L., Lantos M., Climatically driven sedimentary cycles in the Late Miocene sediments ofthe Pannonian Basin, Hungary, Tectonophysics, 1997, 282, 257–276 http://dx.doi.org/10.1016/S0040-1951(97)00222-9CrossrefGoogle Scholar

  • [75] Juhász E., Phillips L., Müller P., Ricketts B., Tóth M.A., Lantos M., Kovács L., Late Neogene sedimentary facies and sequences in the Pannonian Basin, Hungary. in: Durand B., Jolivet L., Horvath F., Ranne M. (Eds.), The Mediterranean basins; Tertiary extension within the Alpine Orogen, Geological Society of London: London, United Kingdom, 1999, 335–356 Google Scholar

  • [76] Sacchi M., Horváth F., Magyari O., Role of unconformity-bounded units in the stratigraphy of the continental cord; a case study from the late Miocene of the western Pannonian Basin, Hungary. in: Durand B., Jolivet L., Horvath F., Ranne M. (Eds.), The Mediterranean basins; Tertiary extension within the Alpine Orogen, Geological Society of London: London, United Kingdom, 1999, 357–390 Google Scholar

  • [77] Nemcok M., Pospisil L., Lexa J., Donelick R.A., Tertiary subduction and slab break-off model of the Carpathian-Pannonian region, Tectonophysics, 1998, 295, 307–340 http://dx.doi.org/10.1016/S0040-1951(98)00092-4CrossrefGoogle Scholar

  • [78] Pecskay Z., Lexa J., Szakacs A., Seghedi I., Balogh K., Konecny V., Zelenka T., Kovacs M. et al., Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathia n area, Geolog. Carpath., 2006, 57, 511–530 Google Scholar

  • [79] Lexa J., Outline of the Alpine geology and metallogeny of the Carpatho-Pannonian region, Guidebook Series - Society of Economic Geologists, 1999, 31, 65–108 Google Scholar

  • [80] Lexa J., Konecny V., The Carpathian volcanic arc; a discussion. Acta Geologica Academiae Scientiarum Hungaricae, 1974, 18, 279–293 Google Scholar

  • [81] Széky-Fux V., Maury R., Tokaji-hegységi riolittufaárak és propilites andezitláva hömérséklete szenesedett fatörzsek szerves anyagának infravörös spektruma alapjan, Földtani Közlöny, 1978, 108, 564–570 (in Hungarian) Google Scholar

  • [82] Bajnöczi B., Molnár F., Maeda K., izawa E., Shallow level low-sulphidation type epithermal systems in the Regec caldera, Central Tokaj Mts., NE-Hungary, Geolog. Carpath., 2000, 51, 217–227 Google Scholar

  • [83] Csank E., A Tokaji-hegységi piroklasztikumban elöforduló üvegek megmerevedési formái, Annual Report of the Hungarian Geological institute, Budapest, 1967, 1969, 299–302 (in Hungarian) Google Scholar

  • [84] Fegyvari T., Horvath J., Zelenka T., A paleovulkani szerkezetek a Tokajü hegysegben ur- es legisfenykep alapjan, Foldtani Kutatas, 1990, 33, 123–125 (in Hungarian) Google Scholar

  • [85] Gyarmati P., Vulkani kozetminostes problematikaja Tokaji-hegysegi peldakon. Foldtani Kozlony, 1961, 91, 374–381 (in Hungarian) Google Scholar

  • [86] Ilkey-Perlaki E., Tokaji-hegysegi riolittufak alkalmazasi kozetjellegei. Foldtani Kozlony, 1966, 96, 55–170 (in Hungarian) Google Scholar

  • [87] Mátyás E., Volcanic and postvolcanic processes in the Tokaj Mountains on the basis of geological data of raw material prospecting, Acta Geologica Academiae Scientiarum Hungaricae, 1974, 18, 421–455 Google Scholar

  • [88] Molnár F., Zelenka T., Fluid inclusion characteristics and paleothermal structure of the adularia-sericite type epithermal deposit at Telkibanya- Tokaj Mts, Northeast Hungary, Geol. Carpath., 1995, 46, 205–215 Google Scholar

  • [89] Pantó G., A Tokaji-hegység földtani vizsgálatának 1964 évi eredményei, Magy. Állami Földt. intéz., Évi Jelentése (1964), 1966, 439–442 (in Hungarian) Google Scholar

  • [90] Székyné Fux V., Balogh K., Szakáll S., A Tokajihegyseg intermedier es bazisos vulkanossaganak kora es idotardtama a K/Ar vizsgalatok tuekreben, Földtani Közlöny, 1981, 111, 413–423 (in Hungarian) Google Scholar

  • [91] Rózsa P., Papp L., Tokajü-hegysegi vulkani es szubvulkani kizetek elkulonitese szemnagysagi osszeteteluk alapjan, Földtani Közlöny, 1988, 118, 265–275 (in Hungarian) Google Scholar

  • [92] Pécskay Z., Molnár F., Relationships between volcanism and hydrothermal activity in the Tokaj Mountains, Northeast Hungary, based on K-Ar ages, Geol. Carpath. (Bratislava), 2002, 53, 303–314 Google Scholar

  • [93] Németh K., Pécskay Z., Martin U., Gméling K., Molnár F., Cronin S.J., Hyaloclastites, peperites and soft-sediment deformation textures of a shallow subaqueous Miocene rhyolitic dome-cryptodome complex, Pálháza, Hungary. in: Thomson K., Petford N. (Eds), Structure and Emplacement of High-Level Magmatic Systems. Geological Society, London, Special Publications 2008, 302 63–86 Google Scholar

  • [94] Martin U., Molnár F., Németh K., Pécskay Z. Miocene multiple resurgent caldera system in the Tokaj Mts., Carpathian Volcanic Chain, Hungary. in: international Union of Geodesy and Geophysics 23rd General Assembly, iAVCEi. 2003. Sapporo, Japan, p. A.527 Google Scholar

About the article

Published Online: 2010-09-01

Published in Print: 2010-09-01

Citation Information: Open Geosciences, Volume 2, Issue 3, Pages 306–320, ISSN (Online) 2391-5447, DOI: https://doi.org/10.2478/v10085-010-0020-9.

Export Citation

© 2010 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in