Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

IMPACT FACTOR 2018: 0.788
5-year IMPACT FACTOR: 0.899

CiteScore 2018: 1.02

SCImago Journal Rank (SJR) 2018: 0.295
Source Normalized Impact per Paper (SNIP) 2018: 0.612

Open Access
See all formats and pricing
More options …

Metals removal during estuarine mixing of Arvand River water with the Persian Gulf water

Abdolreza Karbassi / Gholam Nabi Bidhendi / Mohsen Saeedi
  • Environmental Research Laboratory, Department of Hydraulics and Environmental Engineering School of Civil Engineering, Iran University of Science and Technology, Narmak, 16846, Tehran, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Azadeh Rastegari
Published Online: 2010-12-01 | DOI: https://doi.org/10.2478/v10085-010-0011-x


In the present study, the removal of dissolved and colloidal Cd, Co, Cu, Ni and Zn in Arvand River water during estuarine mixing with the Persian Gulf water is investigated. The flocculation process was investigated for a series of mixtures with salinities ranging from 0.48 to 30.3^. The flocculation rates were indicative of the non-conservative behavior of studied metals during estuarine mixing. Rapid flocculation in the low salinity regimes was observed. The order of the final flocculation rate of metals in the river water was as follows: Co (91.2%)> Cd (86.9%)> Zn (83%)> Cu (75.2%)> Ni (74.3%). Salinity, pH, EC and dissolved oxygen do not govern the flocculation of metals during estuarine mixing. The results of the present investigation show that estuarine processes can be considered as an effective mechanism in self purification of colloidal metals that are anthropogenically introduced into the fresh water ecosystem.

Keywords: heavy metals; estuarine mixing; flocculation; Arvand River; Persian Gulf

  • [1] DeLaune R.D., Johnson C.B., Gambrell R.P., Jugsujinda A., Export of dissolved organic carbon from a ponded freshwater marsh receiving diverted Mississippi River water, The Scientific World J., 2008, 8, 1210–1218 Web of ScienceGoogle Scholar

  • [2] Pain G.N., Sanchez A.L., Mehlhorn T.L., The Donana ecological disaster: contamination of a world heritage estuarine marsh ecosystem with acidified pyrite mine waste, Sci. Tot. Environ., 1998, 222, 45–54 http://dx.doi.org/10.1016/S0048-9697(98)00290-3CrossrefGoogle Scholar

  • [3] Sommerfield P.J., Gee M., Warwick R.M., Benthic community structure in relation to an instantaneous discharge of waste water from a tin mine, Mar. Pollut. Bull., 1994, 28, 363–369 http://dx.doi.org/10.1016/0025-326X(94)90273-9CrossrefGoogle Scholar

  • [4] Achterberg E.P., Herzl V.M.C., Braungardt C.B., Millward G.E., Metal behaviour in an estuary polluted by acid mine drainage: the role of particulate matter, Environ. Pollut., 2003, 121, 283–292 http://dx.doi.org/10.1016/S0269-7491(02)00216-6CrossrefGoogle Scholar

  • [5] Sholkovitz E.R., Boyle E.A., Price N.B., The Removal of Dissolved Humic Acids and Iron During Estuarine Mixing, Earth Planet. Sc. Lett., 1978, 40, 130–136 http://dx.doi.org/10.1016/0012-821X(78)90082-1CrossrefGoogle Scholar

  • [6] Forstner U., Wittmann, G.T.W., Metals in Hydrocycle, Springer, Berlin, 1984 Google Scholar

  • [7] Fox L.E., Wofsy S.C., Kinetics of Removal of Iron Colloids from Estuaries, Geochim. Cosmochim. Acta., 1983, 47, 211–216 http://dx.doi.org/10.1016/0016-7037(83)90134-5CrossrefGoogle Scholar

  • [8] Hunter K.A., On the estuarine mixing of dissolved substances in relation to Colloidal stability and surface properties, Geochim. Cosmochim. Acta., 1983, 47, 467–473 http://dx.doi.org/10.1016/0016-7037(83)90269-7CrossrefGoogle Scholar

  • [9] Zhiqing L., Jianhu Z., Jinsi C., Flocculation of dissolved Fe, Al, Mn, Si, Cu, Pb and Zn during estuarine mixing, Acta Oceanolog. Sin., 1987, 6, 567–576 Google Scholar

  • [10] Featherstone A.M., Ogrady B.V., Removal of Dissolved Copper and Iron at the Freshwater-Saltwater Interface of an Acid Mine Stream, Mar. Pollut. Bull., 1997, 34, 332–337 http://dx.doi.org/10.1016/S0025-326X(96)00089-6CrossrefGoogle Scholar

  • [11] Saeedi M., Karbassi A.R., Mehrdadi N., Flocculation of dissolved Mn, Zn, Ni and Cu during the mixing of Tadjan River water with Caspian Sea water, Int. J. Environ. Stud., 2003, 60, 575–580 http://dx.doi.org/10.1080/0020723032000069204CrossrefGoogle Scholar

  • [12] Karbassi A.R., Nouri J., Ayaz G.O., Flocculation of Trace Metals During Mixing ofTalar River Water with Caspian Sea Water, Int. J. Environ. Res., 2007, 1, 66–73 Google Scholar

  • [13] Saeedi M., Karbassi A.R., Estuarine capacity in removal of trace metals from contaminated river water, Southern Caspian Sea, Water Environ. J., 2008, 22, 193–198 http://dx.doi.org/10.1111/j.1747-6593.2007.00101.xCrossrefWeb of ScienceGoogle Scholar

  • [14] Karbassi A.R., Nouri J., Mehrdadi N., Ayaz G.O., Flocculation of heavy metals during mixing of freshwater with Caspian Sea water, Environ. Geol., 2008, 53, 1811–1816 http://dx.doi.org/10.1007/s00254-007-0786-7CrossrefWeb of ScienceGoogle Scholar

  • [15] Karbassi A.R., Geochemistry of Ni, Zn, Cu, Pb, Co, Cd, V, Mn, Fe, Al and Ca in sediments of North Western part of the Persian Gulf, Int. J. Environ. Stud., 1998, 54, 205–212 http://dx.doi.org/10.1080/00207239808711153CrossrefGoogle Scholar

  • [16] Lance G.N., Williams W.T., A Generalized Sorting for Computer Classifications, Nature, 1966, 212, 218 http://dx.doi.org/10.1038/212218a0CrossrefGoogle Scholar

  • [17] Anderson A.J.B., Numerical Examination of Multivariate of Soil Samples, Math. Geol., 1971, 3, 1–14 http://dx.doi.org/10.1007/BF02047429CrossrefGoogle Scholar

  • [18] Davis J.C., Statistics and Data Analysis in Geology, Wiley International, New York, 1973 Google Scholar

  • [19] National Research Council Canada, CASS-4 Nearshore Seawater Reference Material for Trace Metals, National Institute for Measurement Standards, Ottawa, Canada, 1999 Google Scholar

  • [20] Karbassi A.R., Nadjafpour Sh., Flocculation of dissolved Pb, Cu, Zn and Mn during Estuarine mixing of river water with the Caspian Sea, Environ. Pollut., 1996, 93, 257–260 http://dx.doi.org/10.1016/S0269-7491(96)00047-4CrossrefGoogle Scholar

  • [21] Bewers J.M., MacAulay I.D., Sundby B., Trace Metals in theWaters of the Gulf of St Lawrence, Can. J. Earth Sci., 1974, 11, 939–950 CrossrefGoogle Scholar

  • [22] Burton J.D., Basic Properties and Processes in Estuarine Chemistry, Academic Press, London, 1976 Google Scholar

  • [23] Duinker J.C., Nolting R.F., Distribution model for particulate trace metals in Rhine estuary, southern bight and Dutch Wadden Sea, Netherlands J. Sea Res., 1976, 10, 71–102 http://dx.doi.org/10.1016/0077-7579(76)90005-3CrossrefGoogle Scholar

  • [24] Biati A., Karbassi A.R., Hassani A.H., Monavari S.M., Moattar F., Role of metal species in flocculation rate during estuarine mixing, Int. J. Environ. Sci. Tech., 2010, 7, 327–336 CrossrefGoogle Scholar

About the article

Published Online: 2010-12-01

Published in Print: 2010-12-01

Citation Information: Open Geosciences, Volume 2, Issue 4, Pages 531–536, ISSN (Online) 2391-5447, DOI: https://doi.org/10.2478/v10085-010-0011-x.

Export Citation

© 2010 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Marjan Fallah, Sadigheh Jahangiri, Habib Janadeleh, and Mohammad Ali Kameli
Microchemical Journal, 2019, Volume 146, Page 1090
A. R. Karbassi, M. Fakhraee, M. Heidari, A. R. Vaezi, and A. R. Valikhani Samani
Arabian Journal of Geosciences, 2015, Volume 8, Number 4, Page 2143

Comments (0)

Please log in or register to comment.
Log in