Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year

IMPACT FACTOR 2017: 0.696
5-year IMPACT FACTOR: 0.736

CiteScore 2017: 0.89

SCImago Journal Rank (SJR) 2017: 0.323
Source Normalized Impact per Paper (SNIP) 2017: 0.674

Open Access
See all formats and pricing
More options …

A new ice sheet model validated by remote sensing of the Greenland ice sheet

Diandong Ren / Rong Fu / David Karoly / Lance Leslie
  • School of Meteorology, University of Oklahoma, Norman, Oklahoma, USA
  • Australian Sustainable Development Institute, Curtin University, Perth, Australia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jianli Chen / Clark Wilson
  • Jackson School of Geosciences, The University of Texas at Austin, USA
  • Center for Space Research, The University of Texas at Austin, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-12-01 | DOI: https://doi.org/10.2478/v10085-010-0012-9


Accurate prediction of future sea level rise requires models that accurately reproduce and explain the recent observed dramatic ice sheet behaviours. This study presents a new multi-phase, multiple-rheology, scalable and extensible geofluid model of the Greenland ice sheet that shows the credential of successfully reproducing the mass loss rate derived from the Gravity Recovery and Climate Experiment (GRACE), and the microwave remote sensed surface melt area over the past decade. Model simulated early 21st century surface ice flow compares satisfactorily with InSAR measurements. Accurate simulation of the three metrics simultaneously cannot be explained by fortunate model tuning and give us confidence in using this modelling system for projection of the future fate of Greenland Ice Sheet (GrIS). Based on this fully adaptable three dimensional, thermo-mechanically coupled prognostic ice model, we examined the flow sensitivity to granular basal sliding, and further identified that this leads to a positive feedback contributing to enhanced mass loss in a future warming climate. The rheological properties of ice depend sensitively on its temperature, thus we further verified modelâŹs temperature solver against in situ observations. Driven by the NCEP/NCAR reanalysis atmospheric parameters, the ice model simulated GrIS mass loss rate compares favourably with that derived from the GRACE measurements, or about −147 km3/yr over the 2002–2008 period. Increase of the summer maximum melt area extent (SME) is indicative of expansion of the ablation zone. The modeled SME from year 1979 to 2006 compares well with the cross-polarized gradient ratio method (XPGR) observed melt area in terms of annual variabilities. A high correlation of 0.88 is found between the two time series. In the 30-year model simulation series, the surface melt exhibited large inter-annual and decadal variability, years 2002, 2005 and 2007 being three significant recent melt episodes.

Keywords: Greenland ice sheet modeling; ice thermodynamics and dynamics; granular rheology; climate change and feedbacks; cryosphere processes; remote sensing of ice sheet

  • [1] Greve R., Blatter H., Dynamics of Ice Sheets and Glaciers. Series: Advances in Geophysical and Environmental Mechanics and Mathematics, Springer-Verlag Berlin Heidenberg, 2009 http://dx.doi.org/10.1007/978-3-642-03415-2CrossrefGoogle Scholar

  • [2] Yin J., Schlesinger M., Stouffer R., Model projections of rapid sea-level rise on the northeast coast of the United States, Nature, 2009, 2, 262–266 Google Scholar

  • [3] Alley R., Ice-core evidence of abrupt climate changes, PNAS (please expand), 2000, 97, 1331–1334 http://dx.doi.org/10.1073/pnas.97.4.1331CrossrefGoogle Scholar

  • [4] Thomas R., PARCA Investigators 1, Program for arctic regional climate assessment (PARCA): Goal, key findings, and future directions, J. Geophys. Res. 2001, 06, 33691–33705 http://dx.doi.org/10.1029/2001JD900042Google Scholar

  • [5] Steffen K., Box J., Surface climatology of the Greenland ice sheet: Greenland climate network 1995–1999, J. Geophys. Res., 2001, 106, 33951–33964 http://dx.doi.org/10.1029/2001JD900161CrossrefGoogle Scholar

  • [6] Bamber, J., Ekholm S., Krabill W., A New, highresolution digital elevation model of Greenland fully validated with airborne laser altimeter data, J. Geophys. Res., 2001, 106, 6733–6745 http://dx.doi.org/10.1029/2000JB900365CrossrefGoogle Scholar

  • [7] Mote T. L., Greenland surface melt trends 1973–2007: Evidence of a large increase in 2007, Geophys. Res. Lett., 2007, 34, L22507, doi:10.1029/2007GL031976 http://dx.doi.org/10.1029/2007GL031976CrossrefGoogle Scholar

  • [8] Alley R., The Younger Dryas cold interval as viewed from central Greenland, Quaternary Sci. Revi., 2000, 19, 213–226 http://dx.doi.org/10.1016/S0277-3791(99)00062-1CrossrefGoogle Scholar

  • [9] Krabill W., Abdalati W., Frederick E., Manizade S., Martin C., Sonntag J., Swift R., Thomas R. et al., Greenland ice sheet: High-elevation balance and peripheral thinning, Science, 2000, 289, 428–430 http://dx.doi.org/10.1126/science.289.5478.428CrossrefGoogle Scholar

  • [10] Abdalati W., Steffen K., Snowmelt on the Greenland Ice Sheet as derived from passive microwave satellite data, J. Climate, 1997, 10, 165–175 http://dx.doi.org/10.1175/1520-0442(1997)010<0165:SOTGIS>2.0.CO;2CrossrefGoogle Scholar

  • [11] Rignot E., Kanagaratnam P., Changes in the velocity structure of the Greenland ice sheet, Science, 2006, 311, 986–990 http://dx.doi.org/10.1126/science.1121381CrossrefGoogle Scholar

  • [12] Hansen J., Sato M., Ruedy R., Lo K., Lea D., Medina-Elizade M., Global temperature change, P. Natl.Acad. Sci. USA, 2006, 103, 14288–14293 http://dx.doi.org/10.1073/pnas.0606291103CrossrefGoogle Scholar

  • [13] Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H.L. (Eds.), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007, Cambridge University Press, Cambridge and New York, 2007 Google Scholar

  • [14] Ren D., Karoly D. M. Leslie L., Mountain glacier melting rate for the period 2001–2030 estimated from three CGCM simulations for the Greater Himalayas. J. Appl. Meteorol. Climatol., 2007, 46, 890–899 http://dx.doi.org/10.1175/JAM2499.1CrossrefGoogle Scholar

  • [15] Thompson L., Yao T., Mosley-Thompson E., Davis M., Henderson K., Lin P., A high resolution millennial record of the south Asian monsoon from Himalayan ice cores, Science, 2000, 289, 1916–1919 http://dx.doi.org/10.1126/science.289.5486.1916CrossrefGoogle Scholar

  • [16] Alley R., In search of ice-stream sticky spots, J. Glaciol., 1993, 39, 447–454 Google Scholar

  • [17] Jacka T., Recommendations from the SCAR Ice Sheet Mass Balance and Sea Level (ISMASS) Workshop. American Geophysical Union, Spring Meeting 2002, abstract U42A-01 Google Scholar

  • [18] Jop P., Forterre Y., Pouliquen O., A constitutive law for dense granular flows, Nature, 2006, 441, 727–730 http://dx.doi.org/10.1038/nature04801CrossrefGoogle Scholar

  • [19] MacAyeal D., Irregular oscillations of the west Antarctic ice sheet, Nature, 1992, 359, 29–32 http://dx.doi.org/10.1038/359029a0CrossrefGoogle Scholar

  • [20] Alley R., Dupont T., Parizek B., Anandakrishnan S., Lawson D., Larson G., Evenson E., Outburst flooding and initiation of ice-stream surges in response to climatic cooling: A hypothesis, Geomorphology, 2005, 75, 76–89 Google Scholar

  • [21] Greve R., On the response of the Greenland ice sheet to greenhouse climate change, J. Climatic Change, 2000, 46, 289–303 http://dx.doi.org/10.1023/A:1005647226590CrossrefGoogle Scholar

  • [22] Greve R., Relation of measured basal temperatures and the spatial distribution of the geothermal heat flux for the Greenland ice sheet, Annals of Glaciology, 2005, 42, 424–432 http://dx.doi.org/10.3189/172756405781812510CrossrefGoogle Scholar

  • [23] Cuffey K., Clow G., Alley R., Stuiver M., Waddington E., Saltus R., Large arctic temperature change at the Wisconsin-Holocene glacial transition, Science, 1995, 270, 455–458 http://dx.doi.org/10.1126/science.270.5235.455CrossrefGoogle Scholar

  • [24] Pollack H., Hurter S., Johnson J., Heat flow from the Earths interior: analysis of the global data set, Rev. Geophys., 1993, 31, 267–280 http://dx.doi.org/10.1029/93RG01249CrossrefGoogle Scholar

  • [25] Collins W., Bitz C., Blackmon M., Bonan G., Bretherton C., Carton J., Chang P., Doney S., et al., The community climate system model: CCSM3, J. Climate, 2006, 19, 2122–2143 http://dx.doi.org/10.1175/JCLI3761.1CrossrefGoogle Scholar

  • [26] Van der Veen C., Whillans I., Force budget: I. Theory and numerical methods, J. Glaciology, 1989, 35, 53–60 http://dx.doi.org/10.3189/002214389793701581CrossrefGoogle Scholar

  • [27] Ren D., Leslie L., Karoly D., Landslide risk analysis using a new constitutive relationship for granular flow, Earth Interact., 2008, 12, 1–16 http://dx.doi.org/10.1175/2007EI237.1CrossrefGoogle Scholar

  • [28] Zwinger T., Greve R., Gagliardini O., Shiraiwa T., Lyly M., A full Stokesflow thermo-mechanical model for firn and ice applied to Gorshkov crater glacier, Kamchatka, Ann. Glaciol., 2007, 45, 29–37 http://dx.doi.org/10.3189/172756407782282543CrossrefGoogle Scholar

  • [29] Bueler E., Brown J., Shallow shelf approximation as a “sliding law” in a thermaomechanically coupled ice sheet model, J. Geophys. Res., 2009, 114, F03008 http://dx.doi.org/10.1029/2008JF001179CrossrefGoogle Scholar

  • [30] Engelhardt H., Kamb B., Basal sliding of Ice Stream B, West Antarctica, J. Glaciol., 1998, 44, 223–230 Google Scholar

  • [31] Weertman J., Creep deformation of ice, Annu. Rev. of Earth. Pl. Sc., 1983, 11, 215–240 http://dx.doi.org/10.1146/annurev.ea.11.050183.001243CrossrefGoogle Scholar

  • [32] Bindschadler R., The importance of pressuruized subglacial water in seperation and sliding at the glacier bed, J. Glaciol., 1983, 29, 3–19 Google Scholar

  • [33] Zwally H., Abdalati W., Herring T., Larson K., Saba J., Steffen K., Surface melt-induced acceleration of Greenland ice-sheet flow, Science, 2002, 297, 218–222 http://dx.doi.org/10.1126/science.1072708CrossrefGoogle Scholar

  • [34] Glen J., The creep of polycrystalline ice, Proc. Roy. Soc. Lond. A, 1955, 228, 519–538 http://dx.doi.org/10.1098/rspa.1955.0066CrossrefGoogle Scholar

  • [35] Goldsby D., Kohlstedt D., Superplastic deformation of ice: experimental observations, J. Geophys. Res., 2001, 106, 11017–11030 http://dx.doi.org/10.1029/2000JB900336CrossrefGoogle Scholar

  • [36] Durham W.B., Kirby S.H., Stern L.A., Effects of dispersed particulates on the rheology of water ice at planetary conditions, J. Geophys. Res., 1992, 97, 20883–20897 http://dx.doi.org/10.1029/92JE02326CrossrefGoogle Scholar

  • [37] Smith E., Crosson W., Cooper H., Weng H., Estimation of surface heat and moisture fluxes over a prairie grassland. Part III: Design ofa hybrid physical/remote sensing biosphere model, J. Geophys. Res., 1993, 98, 4951–4978 http://dx.doi.org/10.1029/92JD01907CrossrefGoogle Scholar

  • [38] Crosson W., Laymon C., Inguva R., Schamschula M., Assimilating remote sensing data in a surface flux-soil moisture model, Hydrol. Proc., 2002, 16, 1645–1662 http://dx.doi.org/10.1002/hyp.1051CrossrefGoogle Scholar

  • [39] Benson C., Stratigraphic studies in the snow and firn of the Greenland ice sheet. Snow, Ice and Permafrost Research Establishment (SIPRE), Research Report 70, U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, 1962 Google Scholar

  • [40] Ohmura A., Wild M., Bengtsson L., A possible change in mass balance of Greenland and Antarctica ice sheets in the coming century, J. Climate, 1996, 9, 2124–2135 http://dx.doi.org/10.1175/1520-0442(1996)009<2124:APCIMB>2.0.CO;2CrossrefGoogle Scholar

  • [41] Oerlemans J., Glaciers and Climate Change, A.A. Balkema Publishers, Lisse, 2001 Google Scholar

  • [42] Peng G., Leslie L., Shao Y., Environmental modeling and prediction, Springer Verlag Berlin Heidenberg New York, 2002 Google Scholar

  • [43] Asselin R., Frequency filter for time integrations, Mon. Wea. Rev., 1972, 100, 487–490 http://dx.doi.org/10.1175/1520-0493(1972)100<0487:FFFTI>2.3.CO;2CrossrefGoogle Scholar

  • [44] Ren D., Adjoint retrieval of prognostic land surface model variables for an NWP model: Assimilation of ground surface temperature, Cent. Eur. J. Geosc., 2010, 2, 83–102 http://dx.doi.org/10.2478/v10085-009-0043-2CrossrefGoogle Scholar

  • [45] Schoof C., A variational approach to ice stream flow, J. Fluid Mech., 2006, 556, 227–251 http://dx.doi.org/10.1017/S0022112006009591CrossrefGoogle Scholar

  • [46] Ren D., 4D-Var retrieval of prognostic land surface model variables, PhD Thesis., University of Oklahoma, Norman, Oklahoma, 2004 Google Scholar

  • [47] Zwally H., Giovinetto M., Balance mass flux and ice velocity across the equilibrium line in grainage systems of Greenland, J. Geophys. Res., 2001, 106, 33717–33728 http://dx.doi.org/10.1029/2001JD900120CrossrefGoogle Scholar

  • [48] Fahnestock M., Bindschadler R., Kwok R., Jezek K., Greenland ice sheet surface properties and ice dy-namics from ERS-1 SAR imagery, Science, 1993, 262, 1530–1534 http://dx.doi.org/10.1126/science.262.5139.1530CrossrefGoogle Scholar

  • [49] Joughin I., Fahnestock M., MacAyeal D., Bamber J., Gogineni P., Observation and analysis of ice flow in the largest Greenland ice stream, J. Geophys. Res., 2001, 106, 34021–34034 http://dx.doi.org/10.1029/2001JD900087CrossrefGoogle Scholar

  • [50] Ashcraft I.S., Long D., Comparison of methods for melt detection over Greenland using active and passive microwave measurements, Internat. J. Remote Sens., 2006, 27, 2469–2488 http://dx.doi.org/10.1080/01431160500534465CrossrefGoogle Scholar

  • [51] Fausto R., Ahlstrom A., Van As D., Boggild C., Johnsen S., A new present-day temperature parameterization for Greenland, J. Glaciology, 2009, 55, 95–105 http://dx.doi.org/10.3189/002214309788608985CrossrefGoogle Scholar

  • [52] Maslanik J., Stroeve J., DMSP SSM/I daily polar gridded brightness temperature, 1987–2007, digital media, National Snow and Ice Data Centre Boulder, Colorado, 2007 Google Scholar

  • [53] Chen J., Wilson C., Tapley B., Satellite gravity measurements confirm accelerated melting of Greenland ice sheet, Science, 2006, 313, 1958–1960 http://dx.doi.org/10.1126/science.1129007CrossrefGoogle Scholar

  • [54] Wang W., Warner R., Modelling of anisotropic ice flow in Law Dome, East Antarctica, Ann. Glaciol., 1999, 29, 184–190 http://dx.doi.org/10.3189/172756499781820932CrossrefGoogle Scholar

  • [55] Aschwanden A., Blatter H., Mathematical modelling and numerical simulation of polythermal glaciers, J. Geophys. Res., 2009, 114, F01027 http://dx.doi.org/10.1029/2008JF001028CrossrefGoogle Scholar

  • [56] Meier M., Dyurgerov M., Rick U., Oneel S., Pfeffer W., Anderson R., Anderson S., Glazovsky A., Glaciers Dominate Eustatic Sea-Level Rise in the 21st Century, Science, 2007, 317, 1064–1067 http://dx.doi.org/10.1126/science.1143906CrossrefGoogle Scholar

  • [57] Van der Veen C., Fundamentals of glacier dynamics, A.A. Balkema, Rotterdam, Netherlands, 1999 Google Scholar

  • [58] Paterson W., The physics of glaciers, Pergamon, New York, 1994 Google Scholar

  • [59] Goldsby D., Kohlstedt D., Superplastic deformation of ice: experimental observations, J. Geophys. Res., 2001, 106, 11017–1103 http://dx.doi.org/10.1029/2000JB900336CrossrefGoogle Scholar

  • [60] Hooke R., Iverson N., experimental study of ice flow around a bump: Comparison with theory. Geogr. Ann., 1985, 67A, 187–197 http://dx.doi.org/10.2307/521097CrossrefGoogle Scholar

  • [61] Gilpin R., A model of the “liquid-like” layer between ice and a substrate with applications to wire regelation and particle migration, J. Colloid. Interface Sci., 1979, 68, 235–251 http://dx.doi.org/10.1016/0021-9797(79)90277-7CrossrefGoogle Scholar

  • [62] Shreve R., Glacier sliding at subfreezing temperatures, J. Glaciology, 1984, 30, 341–347 Google Scholar

  • [63] Hallet B., Glacial quarrying: a simple theoretical model, Ann. Glaciol, 1996, 22, 1–9 Google Scholar

  • [64] Alley R., Marotzke J., Nordhaus W.D., Overpeck J.T., Peteet D. M., Pielke R.A. Jr., Pierrehumbert R.T., Rhines P.B. et al., Abrupt Climate Change, Science, 2003, 299, 2005–20103 http://dx.doi.org/10.1126/science.1081056CrossrefGoogle Scholar

About the article

Published Online: 2010-12-01

Published in Print: 2010-12-01

Citation Information: Open Geosciences, Volume 2, Issue 4, Pages 501–513, ISSN (Online) 2391-5447, DOI: https://doi.org/10.2478/v10085-010-0012-9.

Export Citation

© 2010 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Diandong Ren, Rong Fu, Lance M. Leslie, David J. Karoly, Jianli Chen, and Clark Wilson
Journal of Geophysical Research, 2011, Volume 116, Number D5

Comments (0)

Please log in or register to comment.
Log in