Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year

IMPACT FACTOR 2016 (Open Geosciences): 0.475
IMPACT FACTOR 2016 (Central European Journal of Geosciences): 1.071

CiteScore 2016: 0.87

SCImago Journal Rank (SJR) 2015: 0.349
Source Normalized Impact per Paper (SNIP) 2015: 0.753

Open Access
See all formats and pricing
In This Section

Earthquake source parameters at the sumatran fault zone: Identification of the activated fault plane

Madlazim Kasmolan
  • Physics Department, Faculty Mathematics and Science of ITS Jl, Arif Rahman Hakim I, 60111, Surabaya, Indonesia
  • Physics Department, Faculty Mathematics and Science of The State University of Surabaya (UNESA) Jl. Ketintang, 60231, Surabaya, Indonesia
  • Email:
/ Bagus Santosa
  • Physics Department, Faculty Mathematics and Science of ITS Jl, Arif Rahman Hakim I, 60111, Surabaya, Indonesia
  • Email:
/ Jonathan Lees
  • Department of Geological Sciences, University of North Caroline at Chapel Hill Seismology and Volcanology, USA
  • Email:
/ Widya Utama
  • Physics Department, Faculty Mathematics and Science of ITS Jl, Arif Rahman Hakim I, 60111, Surabaya, Indonesia
  • Email:
Published Online: 2010-12-01 | DOI: https://doi.org/10.2478/v10085-010-0016-5


Fifteen earthquakes (Mw 4.1–6.4) occurring at ten major segments of the Sumatran Fault Zone (SFZ) were analyzed to identify their respective fault planes. The events were relocated in order to assess hypocenter uncertainty. Earthquake source parameters were determined from three-component local waveforms recorded by IRIS-DMC and GEOFON broadband lA networks. Epicentral distances of all stations were less than 10°. Moment tensor solutions of the events were calculated, along with simultaneous determination of centroid position. Joint analysis of hypocenter position, centroid position, and nodal planes produced clear outlines of the Sumatran fault planes. The preferable seismotectonic interpretation is that the events activated the SFZ at a depth of approximately 14–210 km, corresponding to the interplate Sumatran fault boundary. The identification of this seismic fault zone is significant to the investigation of seismic hazards in the region.

Keywords: Sumatran Fault Zone; three-component local waveform inversion; earthquake source parameters; fault plane

  • [1] McCarthy A.J., Elders C.F., Cenozolc Deformation In Sumatra: Oblique Subduction and the Development of the Sumatran Fault System. In: Fraser, A.J., Matthews, S.J., Murphy, R.W. (Eds.), Petroleum Geology of Southeast Asia. Geol. Soc. Spec. Pubs, 1997, 126, 355-363

  • [2] Natawldjaya D.H, Neotectonlcs of the Sumatra Fault and Paleogeodesy of the Sumatra Subduction Zone, PhD thesis, California Institute of Technology Pasadena, USA, 2002

  • [3] Yeats R., Sieh K., Allen C., The Geology of Earth-quakes, Oxford University Press, New York, 1997

  • [4] Lasitha S., Radhakrishna M., Sanu T.D., Seismically active deformation in the Sumatra-Java Trench-arc region: Geodynamic Implications, Current Science, 2006, 90, 690–696

  • [5] Prawirodirdjo L., Bock Y., McCaffrey R., and e. al., Geodetic observations of interseismic strain segmentation at the Sumatra subduction zone, Geophys. Res. Lett., 1997, 24, 2601–2604 http://dx.doi.org/10.1029/97GL52691 [Crossref]

  • [6] McCaffrey R., Slip vectors and stretching of the Sumatran fore arc, Geology, 1991, 19, 881–884 http://dx.doi.org/10.1130/0091-7613(1991)019<0881:SVASOT>2.3.CO;2 [Crossref]

  • [7] Bellier O., Sebrier M., Is the slip rate variation on the Great Sumatran Fault accommodated by fore-arc stretching? Geophys. Res. Lett., 1995, 22, 1969–1972 http://dx.doi.org/10.1029/95GL01793 [Crossref]

  • [8] Natawidjaya D.H, The Sumatran Fault Zone — from Source to Hazard, Journal of Earthquake and Tsunami, 2007, 1, 21–47 http://dx.doi.org/10.1142/S1793431107000031 [Web of Science] [Crossref]

  • [9] Haslinger F., Kissling E., Ansorge J., Hatzfeld D., Papadimitriou E., Karakostas V., Makropoulos K., Kahle H.-G., Peter, Y., 3D crustal structure from local earthquake tomography around the Gulf of Arta (Ionian region, NW Greece), Tectonophysics, 1999, 304, 201–218 http://dx.doi.org/10.1016/S0040-1951(98)00298-4 [Crossref]

  • [10] Santosa B.J., Analyzing the seismogram of earthquakes on Sumatra-Java Subduction plane at CHTO observation station, Journal MIPA, 2005, 13, 23–29

  • [11] Klein F.W, HYPOINVERSE, a program for VAX and Pro-350 computers to solve for earthquake locations and magnitudes, U.S. Geological Survey Open-File Report, 1985, 85–515

  • [12] Serpetsidaki A., Sokos E., Tselentis G.A., Zahradnik J., Seismic sequence near Zakynthos Island, Greece, April 2006: identification of the activated fault plane, Tectonophysics, 2010, 480, 23–32 http://dx.doi.org/10.1016/j.tecto.2009.09.024 [Web of Science] [Crossref]

  • [13] Tselentis G.A., Melis N.S., Sokos E., Papatsimpa K., The Egion June 15, 1995 (6.2 ML) earthquake, Western Greece, Pure Appl. Geophysics., 1996, 147, 83–98 http://dx.doi.org/10.1007/BF00876437 [Crossref]

  • [14] Zahradnik J., Jansky J., and Plicka V., Detailed Wave form Inversion for Moment Tensors of M ≈4 Events: Examples from the Corinth Gulf, Greece, Bull. Seism. Soc. Am., 2008, 98, 2756–2771 http://dx.doi.org/10.1785/0120080124 [Crossref]

  • [15] Goldstein P., Snoke A., SAC Availability for the IRIS Community, IRIS Consortium, DMS Electronic Newsletter, 2005, 7,www.iris.edu/news/newsletter/vol7no1/page1.htm

  • [16] Sokos E., Zahradnlk J., ISOLA a Fortran code and a Matlab GUI to perform multiple-point source inversion of seismic data, Computers & Geosciences, 2008, 34, 967–977 http://dx.doi.org/10.1016/j.cageo.2007.07.005 [Web of Science] [Crossref]

  • [17] Kikuchi M., Kanamori H., Inversion of complex body waves — III, Bull. Seism. Soc. Am., 1991, 81, 2335–2350

  • [18] Bouchon M., A review of the discrete wavenumber method, Pure Appl. Geophys, 2003, 160, 445–465 http://dx.doi.org/10.1007/PL00012545 [Crossref]

  • [19] Coutant O., Program of numerical simulation AXI-TRA, Laboratoire de Géophysique Interne et Tectonophysique Report, University of Joseph Fourier, 1990 (in French)

  • [20] Zahradnik J., Serpetsidaki A., Sokos, E., Tselentis G.A., Iterative deconvolution of regional waveforms and a double-event interpretation of the Leftada earthquake, Greece, Bull. Seism. Soc. Am., 2005, 95, 159–172 http://dx.doi.org/10.1785/0120040035 [Crossref]

  • [21] Zahradnik J., Sokos E., Tselentis G.-A., Martakis N., Non-double-couple mechanism of moderate earth-quakes near Zakynthos, Greece, April 2006; explanation terms of complexity, Geophys. Prospect, 2008, 56, 341–356 http://dx.doi.org/10.1111/j.1365-2478.2007.00671.x [Web of Science] [Crossref]

  • [22] Zahradnik J., Gallovic F., Sokos E., Serpetsidaki A. and Tselentis G.A., Quick Fault-Plane Identification by a Geometrical Method: Application to the Mw 6.2 Leonidio Earthquake, 6 January 2008, Greece. Seismological Research Letters, 2008, 79, 653–662 http://dx.doi.org/10.1785/gssrl.79.5.653 [Crossref] [Web of Science]

  • [23] Fitch T., Plate convergence, transcurrent faults, and internal deformation adjacent to southeast Asia and the western Pacific, Journal of Geophysical Research, 1972, 77, 4432–4462 http://dx.doi.org/10.1029/JB077i023p04432 [Crossref]

  • [24] McCaffrey R., Slip vectors and stretching of the Sumatran fore arc, Geology, 1991, 19, 881–884 http://dx.doi.org/10.1130/0091-7613(1991)019<0881:SVASOT>2.3.CO;2 [Crossref]

  • [25] Diament M., Harjono H., Karta K., Deplus C., Dahrin D., Zen Jr. M.T., Gerard M., Lassal O., Martin A., Malod J., Mentawai fault zone off Sumatra: a new key to the geodynamics of western Indonesia, Geology, 1992, 20, 259–262 http://dx.doi.org/10.1130/0091-7613(1992)020<0259:MFZOSA>2.3.CO;2 [Crossref]

  • [26] Zen Jr. M., Dahrin D., Diament M., Harjono H., Karta K., Deplus C., Gerard M., Lassal O., Malod J., Martin A., Mantawai-90 cruise result: the Sumatra oblique subduction and strike slip fault zones. In: Prasetyo H. (Ed.), Geodynamic Processes in the Forearc Sliver Plate and General Topics, Indonesian Assoc. of Geophys., Bandung, 1991, 46

  • [27] Pramumijoyo S., Sebrier M., Neogene and Quaternary fault kinematics around the Sunda Strait area, Indonesia, J. Southeast Asian Earth Sci., 1991, 6, 137–145 http://dx.doi.org/10.1016/0743-9547(91)90106-8 [Crossref]

  • [28] Harjono H., Diament M., Dubois J., Larue M., Seismicity of the Sunda Strait: Evidence for crustal extension and volcanological implicationa, Tectonics, 1991, 10, 17–30 http://dx.doi.org/10.1029/90TC00285 [Crossref]

  • [29] Kerry S., Natawidjaya D., Neotectonics of the Sumatra fault, Indonesia, Journal of Geophysical Research, 2002, 105, 298–309

  • [30] Pacheco J.F., Lynn R.S., Scholz C.H., Nature of seismic coupling along simple plate boundaries of the subduction type, Journal of Geophysical Research, 1993, 98, 14133–14159 http://dx.doi.org/10.1029/93JB00349 [Crossref]

About the article

Published Online: 2010-12-01

Published in Print: 2010-12-01

Citation Information: Open Geosciences, ISSN (Online) 2391-5447, DOI: https://doi.org/10.2478/v10085-010-0016-5. Export Citation

© 2010 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Comments (0)

Please log in or register to comment.
Log in