Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year


IMPACT FACTOR 2016 (Open Geosciences): 0.475

CiteScore 2016: 0.87

SCImago Journal Rank (SJR) 2016: 0.346
Source Normalized Impact per Paper (SNIP) 2016: 0.690

Open Access
Online
ISSN
2391-5447
See all formats and pricing
More options …

Earthquake source parameters at the sumatran fault zone: Identification of the activated fault plane

Madlazim Kasmolan
  • Physics Department, Faculty Mathematics and Science of ITS Jl, Arif Rahman Hakim I, 60111, Surabaya, Indonesia
  • Physics Department, Faculty Mathematics and Science of The State University of Surabaya (UNESA) Jl. Ketintang, 60231, Surabaya, Indonesia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bagus Santosa / Jonathan Lees / Widya Utama
Published Online: 2010-12-01 | DOI: https://doi.org/10.2478/v10085-010-0016-5

Abstract

Fifteen earthquakes (Mw 4.1–6.4) occurring at ten major segments of the Sumatran Fault Zone (SFZ) were analyzed to identify their respective fault planes. The events were relocated in order to assess hypocenter uncertainty. Earthquake source parameters were determined from three-component local waveforms recorded by IRIS-DMC and GEOFON broadband lA networks. Epicentral distances of all stations were less than 10°. Moment tensor solutions of the events were calculated, along with simultaneous determination of centroid position. Joint analysis of hypocenter position, centroid position, and nodal planes produced clear outlines of the Sumatran fault planes. The preferable seismotectonic interpretation is that the events activated the SFZ at a depth of approximately 14–210 km, corresponding to the interplate Sumatran fault boundary. The identification of this seismic fault zone is significant to the investigation of seismic hazards in the region.

Keywords: Sumatran Fault Zone; three-component local waveform inversion; earthquake source parameters; fault plane

  • [1] McCarthy A.J., Elders C.F., Cenozolc Deformation In Sumatra: Oblique Subduction and the Development of the Sumatran Fault System. In: Fraser, A.J., Matthews, S.J., Murphy, R.W. (Eds.), Petroleum Geology of Southeast Asia. Geol. Soc. Spec. Pubs, 1997, 126, 355-363 Google Scholar

  • [2] Natawldjaya D.H, Neotectonlcs of the Sumatra Fault and Paleogeodesy of the Sumatra Subduction Zone, PhD thesis, California Institute of Technology Pasadena, USA, 2002 Google Scholar

  • [3] Yeats R., Sieh K., Allen C., The Geology of Earth-quakes, Oxford University Press, New York, 1997 Google Scholar

  • [4] Lasitha S., Radhakrishna M., Sanu T.D., Seismically active deformation in the Sumatra-Java Trench-arc region: Geodynamic Implications, Current Science, 2006, 90, 690–696 Google Scholar

  • [5] Prawirodirdjo L., Bock Y., McCaffrey R., and e. al., Geodetic observations of interseismic strain segmentation at the Sumatra subduction zone, Geophys. Res. Lett., 1997, 24, 2601–2604 http://dx.doi.org/10.1029/97GL52691CrossrefGoogle Scholar

  • [6] McCaffrey R., Slip vectors and stretching of the Sumatran fore arc, Geology, 1991, 19, 881–884 http://dx.doi.org/10.1130/0091-7613(1991)019<0881:SVASOT>2.3.CO;2CrossrefGoogle Scholar

  • [7] Bellier O., Sebrier M., Is the slip rate variation on the Great Sumatran Fault accommodated by fore-arc stretching? Geophys. Res. Lett., 1995, 22, 1969–1972 http://dx.doi.org/10.1029/95GL01793CrossrefGoogle Scholar

  • [8] Natawidjaya D.H, The Sumatran Fault Zone — from Source to Hazard, Journal of Earthquake and Tsunami, 2007, 1, 21–47 http://dx.doi.org/10.1142/S1793431107000031Web of ScienceCrossrefGoogle Scholar

  • [9] Haslinger F., Kissling E., Ansorge J., Hatzfeld D., Papadimitriou E., Karakostas V., Makropoulos K., Kahle H.-G., Peter, Y., 3D crustal structure from local earthquake tomography around the Gulf of Arta (Ionian region, NW Greece), Tectonophysics, 1999, 304, 201–218 http://dx.doi.org/10.1016/S0040-1951(98)00298-4CrossrefGoogle Scholar

  • [10] Santosa B.J., Analyzing the seismogram of earthquakes on Sumatra-Java Subduction plane at CHTO observation station, Journal MIPA, 2005, 13, 23–29 Google Scholar

  • [11] Klein F.W, HYPOINVERSE, a program for VAX and Pro-350 computers to solve for earthquake locations and magnitudes, U.S. Geological Survey Open-File Report, 1985, 85–515 Google Scholar

  • [12] Serpetsidaki A., Sokos E., Tselentis G.A., Zahradnik J., Seismic sequence near Zakynthos Island, Greece, April 2006: identification of the activated fault plane, Tectonophysics, 2010, 480, 23–32 http://dx.doi.org/10.1016/j.tecto.2009.09.024Web of ScienceCrossrefGoogle Scholar

  • [13] Tselentis G.A., Melis N.S., Sokos E., Papatsimpa K., The Egion June 15, 1995 (6.2 ML) earthquake, Western Greece, Pure Appl. Geophysics., 1996, 147, 83–98 http://dx.doi.org/10.1007/BF00876437CrossrefGoogle Scholar

  • [14] Zahradnik J., Jansky J., and Plicka V., Detailed Wave form Inversion for Moment Tensors of M ≈4 Events: Examples from the Corinth Gulf, Greece, Bull. Seism. Soc. Am., 2008, 98, 2756–2771 http://dx.doi.org/10.1785/0120080124CrossrefGoogle Scholar

  • [15] Goldstein P., Snoke A., SAC Availability for the IRIS Community, IRIS Consortium, DMS Electronic Newsletter, 2005, 7,www.iris.edu/news/newsletter/vol7no1/page1.htm Google Scholar

  • [16] Sokos E., Zahradnlk J., ISOLA a Fortran code and a Matlab GUI to perform multiple-point source inversion of seismic data, Computers & Geosciences, 2008, 34, 967–977 http://dx.doi.org/10.1016/j.cageo.2007.07.005Web of ScienceCrossrefGoogle Scholar

  • [17] Kikuchi M., Kanamori H., Inversion of complex body waves — III, Bull. Seism. Soc. Am., 1991, 81, 2335–2350 Google Scholar

  • [18] Bouchon M., A review of the discrete wavenumber method, Pure Appl. Geophys, 2003, 160, 445–465 http://dx.doi.org/10.1007/PL00012545CrossrefGoogle Scholar

  • [19] Coutant O., Program of numerical simulation AXI-TRA, Laboratoire de Géophysique Interne et Tectonophysique Report, University of Joseph Fourier, 1990 (in French) Google Scholar

  • [20] Zahradnik J., Serpetsidaki A., Sokos, E., Tselentis G.A., Iterative deconvolution of regional waveforms and a double-event interpretation of the Leftada earthquake, Greece, Bull. Seism. Soc. Am., 2005, 95, 159–172 http://dx.doi.org/10.1785/0120040035CrossrefGoogle Scholar

  • [21] Zahradnik J., Sokos E., Tselentis G.-A., Martakis N., Non-double-couple mechanism of moderate earth-quakes near Zakynthos, Greece, April 2006; explanation terms of complexity, Geophys. Prospect, 2008, 56, 341–356 http://dx.doi.org/10.1111/j.1365-2478.2007.00671.xWeb of ScienceCrossrefGoogle Scholar

  • [22] Zahradnik J., Gallovic F., Sokos E., Serpetsidaki A. and Tselentis G.A., Quick Fault-Plane Identification by a Geometrical Method: Application to the Mw 6.2 Leonidio Earthquake, 6 January 2008, Greece. Seismological Research Letters, 2008, 79, 653–662 http://dx.doi.org/10.1785/gssrl.79.5.653CrossrefWeb of ScienceGoogle Scholar

  • [23] Fitch T., Plate convergence, transcurrent faults, and internal deformation adjacent to southeast Asia and the western Pacific, Journal of Geophysical Research, 1972, 77, 4432–4462 http://dx.doi.org/10.1029/JB077i023p04432CrossrefGoogle Scholar

  • [24] McCaffrey R., Slip vectors and stretching of the Sumatran fore arc, Geology, 1991, 19, 881–884 http://dx.doi.org/10.1130/0091-7613(1991)019<0881:SVASOT>2.3.CO;2CrossrefGoogle Scholar

  • [25] Diament M., Harjono H., Karta K., Deplus C., Dahrin D., Zen Jr. M.T., Gerard M., Lassal O., Martin A., Malod J., Mentawai fault zone off Sumatra: a new key to the geodynamics of western Indonesia, Geology, 1992, 20, 259–262 http://dx.doi.org/10.1130/0091-7613(1992)020<0259:MFZOSA>2.3.CO;2CrossrefGoogle Scholar

  • [26] Zen Jr. M., Dahrin D., Diament M., Harjono H., Karta K., Deplus C., Gerard M., Lassal O., Malod J., Martin A., Mantawai-90 cruise result: the Sumatra oblique subduction and strike slip fault zones. In: Prasetyo H. (Ed.), Geodynamic Processes in the Forearc Sliver Plate and General Topics, Indonesian Assoc. of Geophys., Bandung, 1991, 46 Google Scholar

  • [27] Pramumijoyo S., Sebrier M., Neogene and Quaternary fault kinematics around the Sunda Strait area, Indonesia, J. Southeast Asian Earth Sci., 1991, 6, 137–145 http://dx.doi.org/10.1016/0743-9547(91)90106-8CrossrefGoogle Scholar

  • [28] Harjono H., Diament M., Dubois J., Larue M., Seismicity of the Sunda Strait: Evidence for crustal extension and volcanological implicationa, Tectonics, 1991, 10, 17–30 http://dx.doi.org/10.1029/90TC00285CrossrefGoogle Scholar

  • [29] Kerry S., Natawidjaya D., Neotectonics of the Sumatra fault, Indonesia, Journal of Geophysical Research, 2002, 105, 298–309 Google Scholar

  • [30] Pacheco J.F., Lynn R.S., Scholz C.H., Nature of seismic coupling along simple plate boundaries of the subduction type, Journal of Geophysical Research, 1993, 98, 14133–14159 http://dx.doi.org/10.1029/93JB00349CrossrefGoogle Scholar

About the article

Published Online: 2010-12-01

Published in Print: 2010-12-01


Citation Information: Open Geosciences, ISSN (Online) 2391-5447, DOI: https://doi.org/10.2478/v10085-010-0016-5.

Export Citation

© 2010 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in