Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr


IMPACT FACTOR 2018: 0.788
5-year IMPACT FACTOR: 0.899

CiteScore 2018: 1.02

SCImago Journal Rank (SJR) 2018: 0.295
Source Normalized Impact per Paper (SNIP) 2018: 0.612

Open Access
Online
ISSN
2391-5447
See all formats and pricing
More options …

State of stress in the northern Tabas block, east-central Iran, as inferred from focal mechanisms of the 1978 Tabas earthquake sequence

G. Behzad Zamani
Published Online: 2011-03-27 | DOI: https://doi.org/10.2478/s13533-011-0011-9

Abstract

In this paper, the state of stress in the northern Tabas block in east-central Iran is analyzed based on the systematic inversion of aftershock focal mechanisms from the 1978.09.16 Tabas earthquake, to characterise the stress regime that controls most earthquakes in this area. Here, stress inversions of double-couple focal mechanisms of earthquakes recorded during the 30 days following the main shock have been carried out. The calculated average stress regime indicates dominant major 226° to 237° trending compression for the Tabas region. The dominating regime in east-central Iran is thrusting with a minimum stress axis, σ 3, close to vertical. The reconstruction of the main seismotectonic stress in east-central Iran with a NE-SW compression is consistent with independent information of the active plate convergence related to Arabia-Eurasia convergence. Most earthquakes in the mentioned area occur near or around concealed Quaternary thrust faults with their activity being controlled by the NE-SW compression. Where ϕ, the ratio of principal stress differences, is 0.5, a small difference between σ 2; σ 3 and σ 1 and small amounts of deviatoric stress is indicated. Therefore, for small deviatoric horizontal σ 1 it is not possible to increase and reactivate small sections of basement thrust faults and create secondary basement aftershocks. Reconstructed stress regimes in this study for sedimentary cover (237) and basement (226) of Tabas are similar. Therefore, it seems that the basement and cover were coupled together, possibly along the 2–4 km of upper Precambrian low-grade metamorphic rocks. Then these segments of the fold-and-thrust belt were involved in similar seismic activity under a similar stress regime.

Keywords: State of stress; east-central Iran; focal mechanisms; inversion

  • [1] Vernant Ph., Nilforoushan F., Hatzfeld D., Abbasi M.R., Vigny C., Masson F., Nankali H., Martinod J., et al., Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophys. J. Int., 2004, 157, 381–398 http://dx.doi.org/10.1111/j.1365-246X.2004.02222.xCrossrefGoogle Scholar

  • [2] Walker R., J. Jackson, Active tectonics and late Cenozoic strain distribution in central and eastern Iran. Tectonics, 2004, 23, TC5010, doi:10.1029/2003TC001529.v http://dx.doi.org/10.1029/2003TC001529CrossrefGoogle Scholar

  • [3] Regard V., O.Bellier J.-C., Thomas D., Bourl’es S., Bonnet M. R., Abbassi R., Braucher J., Mercier E., et al., Cumulative right-lateral fault slip rate across the Zagros-Makran, transfer zone: role of the Minab-Zendan fault system in accommodating Arabia-Eurasia convergence in southeast Iran. Geophys. J. Int., 2005, 162, 177–203 http://dx.doi.org/10.1111/j.1365-246X.2005.02558.xCrossrefGoogle Scholar

  • [4] Hessami K., Jamali F., Tabasi H., Major Active Faults map of Iran, Scale 1:2500000, 2003. International Institute of Earthquake Engineering and Seismology (IIEES), 1 sheet Google Scholar

  • [5] Jackson J.A., McKenzie D.P., Active tectonics of the Alpine-Himalayan belt between western Turkey and Pakistan, Geophys. J. R. Astr. Soc., 1984. 77, 185–264 Google Scholar

  • [6] Jackson J.A., McKenzie D., The relationship between plate motions and seismic moment tensors, and the rates of active deformation in the Mediterranean and Middle East. Geophys. J. Int., 1988, 95, 45–73 http://dx.doi.org/10.1111/j.1365-246X.1988.tb01387.xCrossrefGoogle Scholar

  • [7] Ambraseys N., Melville C., A History of Persian Earthquakes. Cambridge University Press, Cambridge, UK, 1982 Google Scholar

  • [8] Engdahl E. R., Van der Hilst R., Buland R., Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. B. Seismol. Soc. Am., 1998, 88, 722–743 Google Scholar

  • [9] Fattahi M., Walker R.T., Khatib M.M., Dolati A., and Bahroudi A., Slip-rate estimate and past earthquakes on the Doruneh fault, eastern Iran. Geophys. J. Int., 2007, 168, 691–709 http://dx.doi.org/10.1111/j.1365-246X.2006.03248.xCrossrefWeb of ScienceGoogle Scholar

  • [10] Ambraseys N., Melville C., The seismicity of Kuhistan, Iran. Geogr. J., 1977, 143, 179–199 Google Scholar

  • [11] Walker R., Jackson J., Active tectonics and Late Cenozoic strain distribution in central and eastern Iran. Tectonics, 2004, 23, TC5010, doi:10.1029/2003TC001529 http://dx.doi.org/10.1029/2003TC001529CrossrefGoogle Scholar

  • [12] Berberian M., King G.C.P., Towards a paleogeography and tectonic evolution of Iran. Can. J. Earth Sci., 1981. 18, 210–285 http://dx.doi.org/10.1139/e81-019CrossrefGoogle Scholar

  • [13] McCall G.J.H., The inner Mesozoic to Eocene ocean of south and central Iran and associated microcontinents. Geotectonics, 1996. 29, 490–499 Google Scholar

  • [14] Dewey J.F., Hempton M.R., Kidd W.S.F., Saroglu F., Sengor A.M.C., Shortening of continental lithosphere; the neotectonics of eastern Anatolia, a young collision zone. Special Publication of the Geological Society London, 1986, 19, 3–36 Google Scholar

  • [15] Alavi M., Tectonic map of the Middle East. Geological Survey of Iran, 1991, 1 sheet Google Scholar

  • [16] Stocklin J., Eftekharnejad-Nezhad J., Hushmandzadeh A., Geology of Shotori Range (Tabas area, East Iran). Geological Survey of Iran, Report no 3, 1965 Google Scholar

  • [17] Ruttner A., Nabavi M. H., Hajian J., Geology of the Shirgasht area (Tabas, East Iran). Geological Survey of Iran, Report no 4, 1968 Google Scholar

  • [18] Berbarian M., Aftershock tectonics of the 1978 Tabas-e-Golshan (Iran) earthquake’ sequence: a documented active ‘thin and thick-skinned tectonic’ case. Geophys. J. R. Astr. Soc., 1982, 68, 499–530 Google Scholar

  • [19] Zamani B.G., Angelier J., Zamani A., State of stress induced by plate convergence and stress partitioning in northeastern Iran, as indicated by focal mechanisms of earthquakes. J. Geodyn., 2008, 45, 123–130 Web of ScienceGoogle Scholar

  • [20] Berberian M., Continental deformation in the Iranian Plateau, “Contribution to the Seismotectonics of Iran, Part IV”, Geological Survey of Iran, Tehran, Rep. 1983, No. 52, PP. 415, 444 Google Scholar

  • [21] Berberian M., Tabas-e-Golshan (Iran) catastrophic earthquake of 16 September 1978; a preliminary field report. Disaster, 1979, 2, 207–219 http://dx.doi.org/10.1111/j.1467-7717.1978.tb00099.xCrossrefGoogle Scholar

  • [22] Berberian M., “Contribution to the Seismotectonics of Iran Part 10”, Geological Survey of Iran, Tehran, Rep. 1976, No. 39, 518 P Google Scholar

  • [23] Fitch T.J., Compressional velocity in source regions of deep earthquakes: an application of the master event technique, Earth and planetary science Letters, 1975, 26, 156–166 http://dx.doi.org/10.1016/0012-821X(75)90083-7CrossrefGoogle Scholar

  • [24] Jackson J.A., Fitch T.J., Seismotectonic implications of relocated aftershock sequences in Iran and Turkey. Geophys. J. R. Astr. Soc., 1979, 57, 209–229 Google Scholar

  • [25] Helmberger D.V., Burdick L. J., Synthetic Seismograms. Ann. Rev. Earth Planet. Sci. Lett., 1979, 7, 417–442 http://dx.doi.org/10.1146/annurev.ea.07.050179.002221CrossrefGoogle Scholar

  • [26] Angelier J., Inversion of earthquake focal mechanisms to obtain the seismotectonic stress (a new method free of choice among nodal planes) IV, Geophys. J. Int., 2002, 150, 588–609 http://dx.doi.org/10.1046/j.1365-246X.2002.01713.xCrossrefGoogle Scholar

  • [27] Angelier J., Tectonic analyses of fault slip data sets. J. Geophys. Res., 1984, 89, 5835–5848 http://dx.doi.org/10.1029/JB089iB07p05835CrossrefGoogle Scholar

  • [28] Angelier J., Sur l’analyase de measures recueillies des sites failles: l’utillite d’une confrontation entre les methods dynamiques et cinematiques. (On measure of analysis sites collected faults: Utilities of confrontation between dynamic and kinematics methods), C. R. Hebd. Seanc. Acad. Sci., 1975, 281, 1805–1808 Google Scholar

  • [29] Angelier J., From orientation to magnitudes in paleostress determinations using fault slip data. J. Struct. Geol., 1989, 1/2, 37–50 http://dx.doi.org/10.1016/0191-8141(89)90034-5CrossrefGoogle Scholar

  • [30] Walker R., Jackson J., Baker C., Surface expression of thrust faulting in eastern Iran: source parameters and surface deformation of the 1978 Tabas and 1968 Ferdows earthquake sequences. Geophys. J. Int., 152, 2003, 749–765 http://dx.doi.org/10.1046/j.1365-246X.2003.01886.xCrossrefGoogle Scholar

  • [31] Nilforoushan F., Masson F., Vernant P., Vigny C., Martinod J., Abbasi M., Nankali H., Hatzfeld D., et al., GPS network monitors the Arabia-Eurasia Collision deformation in Iran. Journal of Geodesy, 2003, 77, 411–422 http://dx.doi.org/10.1007/s00190-003-0326-5CrossrefGoogle Scholar

  • [32] Masson F., Anvari M., Djamour Y., Walpersdorf A., Tavakoli F., Daignieres M., Nankali H., Van Gorp S., Large-scale velocity field and strain tensor in Iran inferred from GPS measurements: new insight for the present-day deformation pattern within NE Iran. Earth Planet. Sc. Lett., 2006, 252, 180–188 http://dx.doi.org/10.1016/j.epsl.2006.09.038CrossrefGoogle Scholar

  • [33] McKenzie D., Active tectonics of the Mediterranean region. Geophy. J. R. Astr. Soc., 1972. 30, 109–185. Google Scholar

  • [34] Sarkar I., SriRam V., Hamzehloo H., Khattri K.N., 2005, Subevent analysis for the Tabas earthquake of September 16, using near field accelerograms. Physics Earth and Planetary Interiors, 1978, 151, 53–76 Google Scholar

  • [35] Gillard D., Wyss M., Comparison of strain and Stress tensor orientation: Application to Iran and Southern California. J. Geophys. Res., 1995, 100, 197–213 http://dx.doi.org/10.1029/95JB01871CrossrefGoogle Scholar

  • [36] Gephart J.W., Forsyth D.W., An improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando earthquake sequence. J. Geophys. Res., 1948, 89, 9305–9320 http://dx.doi.org/10.1029/JB089iB11p09305CrossrefGoogle Scholar

  • [37] King G., Soufleris C., Berberian M., The source parameters, surface deformation and Tectonic setting of three recent earthquakes, Thessalonki Greece. 1981, Disasters, (5)1, 36–46. Wiley-Blackwell pub. Google Scholar

  • [38] Zamani B., Study of Tectonic Stress State of Iran, Ph.D. thesis, Shiraz University, Iran, 2009 Google Scholar

About the article

Published Online: 2011-03-27

Published in Print: 2011-03-01


Citation Information: Open Geosciences, Volume 3, Issue 1, Pages 77–89, ISSN (Online) 2391-5447, DOI: https://doi.org/10.2478/s13533-011-0011-9.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in