Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr


IMPACT FACTOR 2018: 0.788
5-year IMPACT FACTOR: 0.899

CiteScore 2018: 1.02

SCImago Journal Rank (SJR) 2018: 0.295
Source Normalized Impact per Paper (SNIP) 2018: 0.612

Open Access
Online
ISSN
2391-5447
See all formats and pricing
More options …

Effect of block rotation on the pitch of slickenlines

Shunshan Xu
  • Centro de Geociencias, Universidad Nacional Autónoma de México, Apartado Postal 1-742, Querétaro, Qro., 76001, México
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ángel Nieto-Samaniego
  • Centro de Geociencias, Universidad Nacional Autónoma de México, Apartado Postal 1-742, Querétaro, Qro., 76001, México
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Susana Alaniz-Álvarez
  • Centro de Geociencias, Universidad Nacional Autónoma de México, Apartado Postal 1-742, Querétaro, Qro., 76001, México
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Luis Velasquillo-Martínez
  • Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas No. 152, Col. San Bartolo Atepehuacan, C.P. 07730, México D.F., México
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-03-27 | DOI: https://doi.org/10.2478/v10085-010-0031-6

Abstract

Rotation of faults or pre-existing weakness planes produce two effects on the slickenlines of fault planes. First, the rotation leads to changes in the pitch of slickenlines. As a result, the aspect of the pre-existing fault may change. For example, after rotation, a normal fault may show features of an oblique fault, a strike-slip fault, or a thrust fault. Second, due to rotation, stress states on the fault planes are different from those before the rotation. As a consequence some previous planes may be reactivated. For an isolated plane, the reactivation due to rotation can produce new sets of slickenlines. With block rotation, superimposed slickenlines can be generated in the same tectonic phase. Thus, it is not appropriate to use fault-slip data from slickenlines to analyze the stress tensor in a region where there is evidence of block rotation. As an example, we present the data of slickenlines from core samples in the Tunich area of the Gulf of Mexico. The results wrongly indicate that the calculated stress tensor deviates from the far-field stress tensor.

Keywords: Block rotation; fault; pitch; slickenline; Mexico

  • [1] Jackson J., Mckenzie D., The geometrical evolution of normal fault systems, J. Struct. Geol., 1983, 5, 471–482 http://dx.doi.org/10.1016/0191-8141(83)90053-6CrossrefGoogle Scholar

  • [2] Sharp I.R., Gawthorpe R.L., Armstrong B., Underhill J.R., Propagation history and passive rotation of mesoscale normal faults: implications for synrift stratigraphic development, Basin Res., 2000, 12, 285–305 http://dx.doi.org/10.1046/j.1365-2117.2000.00132.xCrossrefGoogle Scholar

  • [3] Xu S-S., Nieto-Samaniego A.F., Alaniz-Álvarez S.A., Tilting mechanism in domino faults of the Sierra de San Miguelito, Central Mexico, Geol. Acta, 2004, 3, 189–201 Google Scholar

  • [4] Smith D.K., Escartín J., Schouten H., Cann J.R., Fault rotation and core complex formation: Significant processes in seafloor formation at slow-spreading midocean ridges (Mid-Atlantic Ridge, 13°–15°N), Geochemistry Geophysics Geosystems, 2008, 9, Q03003, DOI: 10.1029/2007GC001699. http://dx.doi.org/10.1029/2007GC001699CrossrefWeb of ScienceGoogle Scholar

  • [5] Ron H., Nur A., Vertical axis rotation in the Mojave; evidence from the independence dike swarm, Geology, 1996, 24, 973–976 http://dx.doi.org/10.1130/0091-7613(1996)024<0973:VARITM>2.3.CO;2CrossrefGoogle Scholar

  • [6] Weinberger R., Agnon A., Ron H., Garfunkel Z., Rotation about an inclined axis — 3-dimensional matrices for reconstructing paleomagnetic and structural data, J. Struct. Geol., 1995, 17, 777–782 http://dx.doi.org/10.1016/0191-8141(94)00108-CCrossrefGoogle Scholar

  • [7] Bott M.H.P., The mechanics of oblique slip faulting, Geol. Mag., 1959, 96, 109–117 http://dx.doi.org/10.1017/S0016756800059987CrossrefGoogle Scholar

  • [8] Allmendinger R.W., 2002. StereoWin for Windows: ftp://www.geo.cornell.edu/pub/rwa Google Scholar

  • [9] Gauthier B., Angelier J., Fault tectonics and deformation: a method of quantification using field data, Earth Planet. Sci. Lett., 1985, 74, 137–148 http://dx.doi.org/10.1016/0012-821X(85)90173-6CrossrefGoogle Scholar

  • [10] Fleischmann K.H., Nemcok M., Paleostress inversion of fault-slip data using the shear stress solution of Means (1989), Tectonophysics, 1991, 196, 195–202 http://dx.doi.org/10.1016/0040-1951(91)90296-5CrossrefGoogle Scholar

  • [11] Pollard D.D., Saltzer S.D., Rubin A.M., Stress inversion methods: are they based on faulty assumptions? J. Struct. Geol., 1993, 15, 1045–1054 http://dx.doi.org/10.1016/0191-8141(93)90176-BCrossrefGoogle Scholar

  • [12] Tikoff B., Wojtal S.F., Displacement control of geologic structures, J. Struct. Geol., 1999, 21, 959–967 http://dx.doi.org/10.1016/S0191-8141(99)00045-0CrossrefGoogle Scholar

  • [13] Cashman P.H., Ellis M.A., Fault interaction may generate multiple slip vectors on a single fault surface, Geology, 1994, 22, 1123–1126 http://dx.doi.org/10.1130/0091-7613(1994)022<1123:FIMGMS>2.3.CO;2CrossrefGoogle Scholar

  • [14] Nieto-Samaniego A.F., Alaniz-Alvarez S.A., Origin and tectonic interpretation of multiple fault patterns, Tectonophysics, 1997, 270, 197–206 http://dx.doi.org/10.1016/S0040-1951(96)00216-8CrossrefGoogle Scholar

  • [15] Angeles A.F.J., Reyes N.J., Quezada M.J.M., Meneses R.J., Tectonic evolution structural styles and oil habitat in the Campeche Sound, Mexico, GCAGS Transactions, 1994, XLIV, 53–62 Google Scholar

  • [16] Bartolini C., Buffler R.T., Blickwede J.F., The circum-Gulf of Mexico and the Caribbean: hydrocarbon habitats, basin formation, and plate tectonics, AAPG Datapages, 2003, 178 Google Scholar

  • [17] Mandujano V.J.J., Keppie M.J.D., Cylindrical and conical fold geometries in the Cantarell structure, southern Gulf of Mexico: implications for hydrocarbon exploration, J. Petrol. Geol., 2006, 29, 215–226 http://dx.doi.org/10.1111/j.1747-5457.2006.00215.xCrossrefGoogle Scholar

  • [18] Mitra S., Figueroa G.C., Hernandez-Garcia J., Alvarado A.M., Three-dimensional structural model of the Cantarell and Sihil structures, Campeche Bay, Mexico, AAPG Bulletin, 2005, 89, 1–26 http://dx.doi.org/10.1306/08310403108CrossrefGoogle Scholar

  • [19] Angelier J., Programmes de Jacques Angelier: Tectonique Quantitative (version 5.45), 1991 Google Scholar

  • [20] Angelier J., From orientation to magnitudes in paleostress determinations using fault slip data, J. Struct. Geol., 1989, 11, 37–50 http://dx.doi.org/10.1016/0191-8141(89)90034-5CrossrefGoogle Scholar

  • [21] Angelier J., Determination of the mean principal directions of stress for a given fault population, Tectonophysics, 1979, 56, T17–T26 http://dx.doi.org/10.1016/0040-1951(79)90081-7CrossrefGoogle Scholar

  • [22] Nemcok M., Kova’c D., Lisle R.J., A stress inversion procedure for polyphase calcite twin and fault/slip data sets, J. Struct. Geol., 1999, 21, 597–611 http://dx.doi.org/10.1016/S0191-8141(99)00053-XCrossrefGoogle Scholar

  • [23] Chapple W.M., Spang J.P., Significance of layer-parallel slip during folding of layered sedimentary rocks, GSA Bulletin, 1974, 85, 1523–1534 http://dx.doi.org/10.1130/0016-7606(1974)85<1523:SOLSDF>2.0.CO;2CrossrefGoogle Scholar

  • [24] Sibson R.H., A note on fault reactivation, J. Struc. Geol., 1985. 7, 751–754 http://dx.doi.org/10.1016/0191-8141(85)90150-6CrossrefGoogle Scholar

  • [25] Ferrill D.A. Morris A.P., Jones S.M., Stamatakos J.A., Extensional layer parallel shear and normal faulting, J. Struc. Geol., 20, 1998, 355–362 http://dx.doi.org/10.1016/S0191-8141(97)00090-4CrossrefGoogle Scholar

  • [26] Fossen H., Rykkelid E., The interaction between oblique and layer-parallel shear in high-strain zones: observations and experiments, Tectonophysics, 1992, 207, 331–343 http://dx.doi.org/10.1016/0040-1951(92)90394-LCrossrefGoogle Scholar

  • [27] Maerten L., Variation in slip on intersecting normal faults: Implications for paleostress inversion, J. Geophys. Res., 2000, 105, 2553–2565 http://dx.doi.org/10.1029/2000JB900264CrossrefGoogle Scholar

  • [28] Lehner F.K., A model for intergranular pressure solution in open systems, Tectonophysics, 1995, 245, 153–170 http://dx.doi.org/10.1016/0040-1951(94)00232-XCrossrefGoogle Scholar

  • [29] Gal D., Nur S., Elastic strain energy as a control in the evolution of asymmetric pressure-solution contacts, Geology, 1998, 26, 663–665 http://dx.doi.org/10.1130/0091-7613(1998)026<0663:ESEAAC>2.3.CO;2CrossrefGoogle Scholar

About the article

Published Online: 2011-03-27

Published in Print: 2011-03-01


Citation Information: Open Geosciences, Volume 3, Issue 1, Pages 29–36, ISSN (Online) 2391-5447, DOI: https://doi.org/10.2478/v10085-010-0031-6.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in