Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr


IMPACT FACTOR 2017: 0.696
5-year IMPACT FACTOR: 0.736

CiteScore 2017: 0.89

SCImago Journal Rank (SJR) 2017: 0.323
Source Normalized Impact per Paper (SNIP) 2017: 0.674

Open Access
Online
ISSN
2391-5447
See all formats and pricing
More options …

The hydrocarbon potential, thermal maturity, sequence stratigraphic setting and depositional palaeoenvironment of carbonaceous shale and lignite successions of Panandhro, northwestern Kutch Basin, Gujarat, Western India

Vinay Sahay
Published Online: 2011-03-27 | DOI: https://doi.org/10.2478/v10085-010-0032-5

Abstract

The objective of the present paper is to provide geochemical and palynological data to characterize lignites and carbonaceous shales from Panandhro, northwestern Kutch Basin, Gujarat, Western India, in terms of their hydrocarbon potential, thermal maturity, sequence stratigraphic settings and depositional palaeoenvironment. The samples, collected in Panandhro lignite mine, belong to Naredi Formation of Late Paleocene-Early Eocene age. The geochemical results are based on proximate analysis, ultimate analysis, X-ray diffraction and Rock-Eval py-rolysis analyses, whereas palynological data include palynofossil composition and thermal alteration index (TAI). The TOC, hydrogen index (HI), cracked hydrocarbon (S2), bitumen index (BI), quality index (QI), and the total genetic potential (S1+S2) values indicate that the studied lignites and carbonaceous shales have good source rock potential. The organic matter is predominantly of type II and type II/III kerogen, which has potential to generate oil as well as gas. Thermal maturity determined from thermal alteration index (TAI), Tmax and production index (PI) indicates that the organic matter is immature, and in the diagenesis stage of organic matter transformation. The deposition of the studied carbonaceous shales and lignites took place in palaeoenvironments varying from brackish mangrove to freshwater swamp. This study indicates that the proportion of ferns, palms, volatile matter content, S/C, H/C ratios, as well as the presence of siderite and quartz can be used as an indicator of accommodation trends in the coal depositional system. The Panandhro carbonaceous shales and lignites were deposited during the lowstand systems tract with many cycles of small magnitude trangressive-regressive phases. Thus, the geochemistry and ecological palynology are useful not only for the investigation of coal quality and origin, but also to infer accommodation space settings of the mire. This can be gainfully utilized in the coal industry for coal mine planning, development and exploitation, because of the predictive ability to infer changes in stratigraphy and coal quality.

Keywords: hydrocarbon potential; organic matter; maturity; accommodation space; palaeoenvironment; Panandhro; India

  • [1] Singh A., Singh B.D., Petrology of Panandhro lignite deposit, Gujarat in relation to palaeodepositional condition. Journal of Geological Society of India, 2005, 66, 334–344 Google Scholar

  • [2] Mishra B.K., Navale G.K.B., Panandhro lignite from Kutch (Gujarat), India: petrological nature, genesis, rank and sedimentation. Palaeobotanist, 1992, 39, 236–249 Google Scholar

  • [3] Stach E., Mackowesky M., Teichmuller M., Taylor G.H., Chandra D., Teichmuller R., Stachs Textbook of Coal Petrology. Gebruder Borntraeger, Berlin, 1982 Google Scholar

  • [4] Diessel C.F.K., Utility of coal petrology for sequence statigraphic analysis. Int. J. Coal Geol., 2007, 70, 3–34 http://dx.doi.org/10.1016/j.coal.2006.01.008CrossrefGoogle Scholar

  • [5] Biswas S.K., Tertiary stratigraphy of Kutch, Journal of the Palaentological Society of India, 1992, 37, 1–29 Google Scholar

  • [6] Bureau of Indian Standards, Methods of test for coal and coke, Proximate analysis, Indian Standard (IS): 1350. Part1, New Delhi, 1984 Google Scholar

  • [7] Sarkar S., Fuels and Combustion. Orient Longman, India, 1990 Google Scholar

  • [8] Tan K.H., Soil sampling, preparation and analysis. Marcel Dekker, New York, 1996 Google Scholar

  • [9] Espitalie J., Laporte J. L., Madec M., Marquis F., Leplat P., Paulet J., Boutefeu A., Methode Rapide de Characterisation des Roches Meres de leur Potentiel Petrolier et de leur Degre d Evolution (Rapid method for source rock characterization, and for determination of their petroleum potential and degree of evolution). Revue de LInsitut Francais du Petrole, 1977, 32, 23–42 (in French) Google Scholar

  • [10] Katz B. J., Limitations of Rock-Eval pyrolysis for typing organic matter, Org. Geochem., 1983, 4, 195–199 http://dx.doi.org/10.1016/0146-6380(83)90041-4CrossrefGoogle Scholar

  • [11] Traverse A., Paleopalynology. Unwin Hyman, Boston, 1988 Google Scholar

  • [12] Germeraad J.H., Hopping CA., Muller J., Palynology of Tertiary sediments from tropical areas. Review of Palaeobotany Palynology, 1968, 6, 189–348 http://dx.doi.org/10.1016/0034-6667(68)90051-1CrossrefGoogle Scholar

  • [13] Teichmuller M., The genesis of coal from the viewpoint of coal petrology. Int. J. Coal Geol., 1989, 12, 1–87 http://dx.doi.org/10.1016/0166-5162(89)90047-5CrossrefGoogle Scholar

  • [14] Tissot B., Welte, D., Petroleum formation and occurrence. Springer-Verlag, Berlin, 1984 Google Scholar

  • [15] Peters K.E., Cassa M.R., Applied Source Geochemistry. In: Magoon LB., Dow W.G. (Eds.), The Petroleum System from Source to Trap, AAPG Bulletin, 1994, 70, 329 Google Scholar

  • [16] Killops S.D., Funnell R.H., Suggate R.P., Sykes R., Peters K.E., Walters C, Woolhouse A.D., Weston R.J., Boudou J.P., Predicting generation and expulsion of paraffinic oil from vitriniterich coals. Org. Geochem., 1998, 29, 1–21 http://dx.doi.org/10.1016/S0146-6380(98)00087-4CrossrefGoogle Scholar

  • [17] Pepper A.S., Corvi P.J., Simple kinetic models of petroleum formation Part I: oil and gas generation from kerogen. Mar. Petrol. Geol., 1995, 12, 291–319 http://dx.doi.org/10.1016/0264-8172(95)98381-ECrossrefGoogle Scholar

  • [18] Hunt J.M., Petroleum Geochemistry and Geology. W.H. Freeman and Company, New York, 1996 Google Scholar

  • [19] Sykes R., Snowdon L. R., Guidelines for assessing the petroleum potential coaly source rocks using Rockeval pyrolysis. Org. Geochem., 2002, 33, 1441–1455 http://dx.doi.org/10.1016/S0146-6380(02)00183-3CrossrefGoogle Scholar

  • [20] Petersen H.I., The petroleum generation potential and effective oil window of humic coals related to coal composition and age. Int. J. Coal Geol., 2006, 67, 221–248 http://dx.doi.org/10.1016/j.coal.2006.01.005CrossrefGoogle Scholar

  • [21] Teichmuller M., Generation of petroleum like substances in coal seams as seen under the microscope. In: Tissot B., Bienner F. (Eds.), Advances in organic geochemistry, Technip, Paris, 1974, 379–407 Google Scholar

  • [22] Bailey N.J.L., Hydrocarbon potential of organic matter. In: Brooks J. (Ed.), Organic matter studies and fossil fuel exploration, Academic Press, London, 1981, 283–302 Google Scholar

  • [23] Vandenbroucke M., Largeau C., Kerogen origin, evolution and structure. Org. Geochem., 2007, 38, 719–833 http://dx.doi.org/10.1016/j.orggeochem.2007.01.001CrossrefGoogle Scholar

  • [24] Han Z., Kruge M.A., Crelling J.C., Bensley D.F., Classification of torbanite and cannel coal, insights from petrographic analysis of density fractions. Int. J. Coal Geol., 1999, 38, 181–202 http://dx.doi.org/10.1016/S0166-5162(98)00013-5CrossrefGoogle Scholar

  • [25] Sahay V.K., Determination of GCV equivalence value from carbon, hydrogen of coal with a note on present Coal Bed Methane generation potential of Wardha valley coalfields, Vidarbha region, Maharashtra. Journal of the Geological Association and Research Centre, 2006, 14, 50–52 Google Scholar

  • [26] Singh A., Rank assesment of Panandhro lignite deposits, Kutch basin, Gujarat. Journal of Geological Society of India, 2002, 59, 69–77 Google Scholar

  • [27] Directorate General of Hydrocarbons (DGH), Kutch Basin geology, stratigraphy, tectonics and hydrocarbon potential, 2010 http://www.dghindia.org/17.aspx Google Scholar

  • [28] Poumot C., Palynological evidence for eustatic events in the tropical Neogene. Bulletin des Centres de Recherches Exploration-Production Elf Aquitaine, 1989, 13, 437–453 Google Scholar

  • [29] Rull V., Middle Eocene mangroves and vegetation changes in the Maracaibo basin. Palaios, 1998, 13, 287–296 http://dx.doi.org/10.2307/3515451CrossrefGoogle Scholar

  • [30] Mandaokar B.D., Palynology of the coal bearing sediments in the Tikak Parbat Formation from Jeypore colliery, Dilli-Jeypore coalfields, Assam, India. Journal of The Palaeontological Society of India, 2000, 45, 173–185 Google Scholar

  • [31] Mandaokar B.D., Palynoflora from the Keifang Formation (Early Miocene) Mizoram, India and its environmental significance. Journal of The Palaeontological Society of India, 2002, 47, 77–83 Google Scholar

  • [32] Samant B., Tapaswi P.M., Palynology of the Early Eocene Surat lignite deposits of Gujarat, India. Journal of the Palaeontological Society of India, 2001, 46, 121–132 Google Scholar

  • [33] Ramanujam C.G. K., Palynology of the Neogene Warkalli beds of Kerala state in south India. Journal of The Palaeontological Society of India, 1987, 32, 26–46 Google Scholar

  • [34] Thanikaimoni G., Caratini C., Venkatachala B.S., Ra-manujam C.G.K., Kar R.K., Selected Tertiary An-giosperm pollen from India and their relationship with African Tertiary pollens. Institut Francais de Pondichery, Travaux de la Section Scientific et Technique, Pondichery, 1984 Google Scholar

  • [35] Graham A., Studies in Neotropical Botany. Late Tertiary vegetation and environments of southeastern Guatemala, Palynofloras from the Mio-Pliocene Padre Miguel Group and the Pliocene Herreria Formation. Am. J. Bot., 1998, 85, 1409–1425 http://dx.doi.org/10.2307/2446399CrossrefGoogle Scholar

  • [36] Muller J., Palynology of the Pedawan and Plateau Sandstone formations (Cretaceous-Eocene) in Sarawak, Malaysia. Micropaleontology, 1968, 14, l–37 http://dx.doi.org/10.2307/1484763CrossrefGoogle Scholar

  • [37] De Villiers S.E., Cadman A., An analysis of the paly-nomorphs obtained from Tertiary sediments at Koing-naas, Namaqualand, South Africa. J. Afr. Earth Sci., 2001, 33, 17–47 http://dx.doi.org/10.1016/S0899-5362(01)90089-2CrossrefGoogle Scholar

  • [38] Hoorn C., Fluvial palaeoenvironments in the intracra-tonic Amazonas Basin (Early Miocene — early Middle Miocene, Colombia). Palaeogeogr. Palaeoecol., 1994, 109, 1–54 http://dx.doi.org/10.1016/0031-0182(94)90117-1CrossrefGoogle Scholar

  • [39] Pasley M., Gregory W., Hart G. F., Organic matter variations in transgressive and regressive shales. Org. Geochem., 1991, 17, 483–509 http://dx.doi.org/10.1016/0146-6380(91)90114-YCrossrefGoogle Scholar

  • [40] Mitchum R.M.Jr., Vail P.E., Thomson S., The depositional sequence as a basic unit for stratigraphic analysis. In: Payton C.E. (Ed.), Seismic stratigraphy-Applications to hydrocarbon exploration. American Association of Petroleum Geologist Memoir, 1977, 26, 53–62 Google Scholar

  • [41] Bohacs K.M., Suter J., Sequence stratigraphic distribution of coaly rocks: fundamental controls and examples. Am. Assoc. of Petrol. Geol. B., 1997, 81, 1612–1639 Google Scholar

  • [42] Diessel C. F. K., Coal-bearing depositional systems. Springer-Verlag, Berlin, 1992 Google Scholar

  • [43] Davies R., Howell J., Boyd R., Flint S., Diesel C., High resolution sequence stratigraphic correlation between shallow marine and terrestrial strata: Examples from the Sunnyside Member of the Cretaceous Blackhawk Formation, Book Cliffs, eastern Utah. Am. Assoc. of Petrol. Geol. B., 2006, 90, 1121–1140 Google Scholar

  • [44] Neumann A.C., McIntyre I.G., Reef response to sea-level-catch up, keep up, or give up. In: Gabrie C., Toffart J. L. and Salvat B. (Eds.), “Proceedings of the Fifth International Coral Reef Congress”, Morea, French Polynesia, Antenne Museum-Ephe, 1985, 3, 105–110 Google Scholar

  • [45] Emery D., Myers K.J., Sequence Stratigraphy. Blackwell Science, London, 1996 http://dx.doi.org/10.1002/9781444313710CrossrefGoogle Scholar

  • [46] Haq B.U., Hardenbol J., Vail P.R., Mesozoic and Cenozoic chronostratigraphy and eustatic cycles. Society for Sedimentary Geology Special Publication, 1998, 42, 71–108 Google Scholar

  • [47] Saraswati P.K., Banerji R.K., Lithostratigraphic classification of the Tertiary sequence of northwestern Kutch. In: Badve R. M., Borkar V. D., Ghare M. A. and Rajshekhar C. S. (Eds.), Proceedings of X Indian Collquium on Micropalaeontology and Stratigraphy, Pune, 1984, 369–376 Google Scholar

About the article

Published Online: 2011-03-27

Published in Print: 2011-03-01


Citation Information: Open Geosciences, Volume 3, Issue 1, Pages 12–28, ISSN (Online) 2391-5447, DOI: https://doi.org/10.2478/v10085-010-0032-5.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Snigdharani Mishra, Devleena Mani, S. Kavitha, M.S. Kalpana, D.J. Patil, D.U. Vyas, and A.M. Dayal
Journal of Petroleum Science and Engineering, 2014, Volume 124, Page 114
[2]
Benjamin Hook, Jochen Halfar, Ze'ev Gedalof, and Jörg Bollmann
Tree-Ring Research, 2013, Volume 69, Number 2, Page 87

Comments (0)

Please log in or register to comment.
Log in