Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

IMPACT FACTOR 2018: 0.788
5-year IMPACT FACTOR: 0.899

CiteScore 2018: 1.02

SCImago Journal Rank (SJR) 2018: 0.295
Source Normalized Impact per Paper (SNIP) 2018: 0.612

Open Access
See all formats and pricing
More options …

Appropriate sampling strategy and analytical methodology to address contamination by industry. Part 2: Geochemistry and speciation analysis

Aurela Shtiza / Rudy Swennen
Published Online: 2011-03-27 | DOI: https://doi.org/10.2478/v10085-010-0033-4


The degree of contamination in soils, sediments and dusts can be assessed based on knowledge of a variety of factors, such as industrialization, type of contaminants, deposition conditions, contamination-control techniques, along with the characteristics of the recipient environmental compartments, which include pathways for contamination transport, depth of infiltration, and degree of groundwater contamination. The impact of contaminants also depends on the quantity, mobility and speciation of contaminants/wastes as well as on the sensitivity of the recipient compartments. With sufficient knowledge of these factors, a number of conclusions can be drawn concerning the status of contamination in industrialized areas. This literature review aims to scrutinize some of the methods used to analyse the occurrence, speciation, mobility, bioavailability and likely the toxic effects of contaminants in the environment.

Keywords: single extractions; sequential extraction; pHstat; leaching; mobility; speciation; industrial contaminants

  • [1] Ferguson C.C., Assessing risks from contaminated sites: Policy and Practice in 16 European countries. Land Contam. Recl., 1999, 7, 33–54 Google Scholar

  • [2] International Council on Mining & Metals (ICMM), Metals Environmental Risk Assessment Guidance MERAG, International Council on Mining & Metals, UK, 2007, 1–80. Google Scholar

  • [3] Nortcliff S., Sampling and pre-treatment and some observations from the United Kingdom. Science of. Total Environment, 2001, 264, 163–168 http://dx.doi.org/10.1016/S0048-9697(00)00619-7CrossrefGoogle Scholar

  • [4] Shtiza A., Tashko A., Appropriate sampling strategy and analytical methodology to address contamination by industry: Part 1 Conceptual model of a sampling design and sampling types. Central European Journal of Geosciences., 2009, 1, 193–206 http://dx.doi.org/10.2478/v10085-009-0018-3Google Scholar

  • [5] USEPA, Guidance of choosing a sampling design for environmental data collection. For use in developing a quality assurance project plan EPA QA/G-5S. EPA/240/R-02/005. 2002, 1–178 Google Scholar

  • [6] Hill S.J., Arowolo T.A., Butler O.T., Chenery S.R.N., Cook J.M., Cresser M.S., Miles D.L., Atomic spectrometry update: Environmental analysis. J. Anal. Atom. Spectrom., 2002, 17: 284–317 http://dx.doi.org/10.1039/b200833pCrossrefGoogle Scholar

  • [7] Fortunati G.U., Pasturenzi M., Quality in soil sampling. Quim. Anal., 1994, 13, 5–20 Google Scholar

  • [8] Swiss Agency for the Environment, Forests and Landscape (SAFEL), Sampling and sample pre-treatment for soil pollutant monitoring. Swiss Agency for the Environment, Forests and Landscape, Berne 2003, 1–104 Google Scholar

  • [9] Narizzano R., Risso F., Innocenti R., Mollica V., Tortarolo B., Soil subsampling in environmental sciences: the role of granulometry. J. Environ. Monit., 2008, 10, 993–997 http://dx.doi.org/10.1039/b806522pCrossrefGoogle Scholar

  • [10] McLean J.E., Bledsoe B.E., Behavior of metals in soils. EPA/540/S-92/018, 1992, 1–25 Google Scholar

  • [11] Kersten M., Förstner U., Effect of sample pretreatment on the reliability of solid speciation data of heavy metals — implications for the study of early diagenetic processes. Mar. Chem., 1987, 22, 299–312 http://dx.doi.org/10.1016/0304-4203(87)90016-8CrossrefGoogle Scholar

  • [12] Zhang S., Wang S., Shan X., Effect of sample pretreatment upon the metal speciation in sediments by a sequential extraction procedure. Chemical Speciation and Bioavailability, 2001, 13, 69–74 http://dx.doi.org/10.3184/095422901782775435CrossrefGoogle Scholar

  • [13] Worsfold P., Gimbert L., Mankasingh U., Omaka O., Hanrahan G., Gardolinski P., Haygarth P., Turner B., Keith-Roach M., McKelvie I., Sampling, sample treatment and quality assurance issues for the determination of phosphorus species in natural waters and soils. Talanta, 2005, 66, 273–293 http://dx.doi.org/10.1016/j.talanta.2004.09.006CrossrefGoogle Scholar

  • [14] Turner B., Newman S., Cheesman A., Ramesh R., Sample pre-treatment and phosphorus speciation in wetland soils. Soil Sci. Soc. America J., 2008, 71, 1538–1546 http://dx.doi.org/10.2136/sssaj2007.0017CrossrefGoogle Scholar

  • [15] Prietzel J., Tyufekchieva N., Eusterhues K., Kögel-Knabner I., Thieme J., Paterson D., McNulty I., de Jonge M., Eichert D., Salomé M., Anoxic versus oxic sample pre-treatment: Effects on the speciation of sulfur and iron in well-aerated and wetland soils as assessed by X-ray absorption near-edge spectroscopy (XANES). Geoderma, 2009, 153, 318–330 http://dx.doi.org/10.1016/j.geoderma.2009.08.015CrossrefGoogle Scholar

  • [16] Paul S., Martinson G., Veldkamp E. Flessa H., Sample pre-treatment affects the distribution of organic carbon in aggregates of tropical grassland soils. Soil Sci. Soc. America J., 2008, 72, 500–506 http://dx.doi.org/10.2136/sssaj2007.0052NCrossrefGoogle Scholar

  • [17] Wagner G., Desaules A., Muntau H., Theocharopoulos S., Quevauviller Ph., Harmonization and quality assurance in pre-analytical steps of soil contamination studies — conclusions and recommendations of the CEEM Soil project. Science of Total Environment, 2001, 264, 103–117 http://dx.doi.org/10.1016/S0048-9697(00)00614-8CrossrefGoogle Scholar

  • [18] Food and Agriculture Organization (FAO), Guideline for soil description. Food and Agriculture Organization of the United Nations, Rome, Italy, 2006 Google Scholar

  • [19] Munsell Revised Standard Soil Color Charts. Eijkelkamp Agri-Research Equipment, 1997 Google Scholar

  • [20] Buck R.P., Rondinini S., Covington A.K., Baucke F.G.K., Brett C.M.A., Camões M.F., Milton M.J.T., Mussini T., et al., Measurement of ph. Definition, standards and procedures. Pure and Applied Chemistry, 2002, 74, 2169–2200 http://dx.doi.org/10.1351/pac200274112169CrossrefGoogle Scholar

  • [21] SSSA, Glossary of Soil Science Terms, Soil Science Society of America, USA, 1987 Google Scholar

  • [22] van Reeuwijk L.P., Procedures for soil analysis, 3rd ed Wageningen, World Soil Information (ISRIC), the Netherlands, 1992 Google Scholar

  • [23] Gee G.W., Bauder J.W., Particle size analysis. In: Klute A. (Ed.), Methods of soils analysis. Part 1. Physical and Mineralogical methods. American Society of Agronomy and Soil Science Society, Wisconsin, USA, 1986, 383–411 Google Scholar

  • [24] McLeod N., Chemical immobilization of chromium wastes using modified smectite clays (e-clays). Environ. Geochem. Hlth., 2001, 23, 273–279 http://dx.doi.org/10.1023/A:1012401332610CrossrefGoogle Scholar

  • [25] Alloway B.J., (Ed.) Heavy metals in soils. Blackie Academic Professional, 1995, 1–10 Google Scholar

  • [26] Moore D.M., Reynolds R.C., (Eds.) X-Ray Diffraction and Identification and Analysis of Clay Minerals. New York: Oxford Univ Press. 1989, 180–271 Google Scholar

  • [27] Schnitzer M., Khan S.U., Chemistry of soil organic matter. In: Sparks D. (Ed.) Environmental soil chemistry. Academic Press, San Diego C.A., 2003, 75–113 Google Scholar

  • [28] Sparks D., (Ed.) Environmental soil chemistry. Academic Press, San Diego C.A., 2003, 1–42 http://dx.doi.org/10.1016/B978-012656446-4/50001-3CrossrefGoogle Scholar

  • [29] Allison L.E., Organic Carbon, Walkley-Black method. In: Black C.A., (Ed.) Methods of Soil Analysis, Part 2. American Society of Agronomy. Madison, WI., 1965, 1367–1378 Google Scholar

  • [30] Vandecasteele C., Block C.B., Modern Methods for Trace Element Determination. John Wiley & Sons, Chichester, 1997, 10–72 Google Scholar

  • [31] Farmer J.G., Graham M.C., Thomas R.P., Licona-Manzur C., Paterson. E., Campbell C.D., Geelhoed J.S., Lumsdon D.G., et al., Assessment and modelling of the environmental chemistry and potential for remediative treatment of chromium contaminated land. Environ. Geochem. Hlth., 1999, 21, 331–337 http://dx.doi.org/10.1023/A:1006788418483CrossrefGoogle Scholar

  • [32] Marguí E., Salvadó V., Queralt I., Hidalgo M., Comparison of three-stage sequential extraction and toxicity characteristic leaching tests to evaluate metal mobility in mining wastes. Anal. Chim. Acta., 2004, 524, 151–159 http://dx.doi.org/10.1016/j.aca.2004.05.043CrossrefGoogle Scholar

  • [33] Linge K.L., Methods for investigating trace element binding in sediments. Critic. Review in Environment Science and Technology, 2008, 38, 165–196 http://dx.doi.org/10.1080/10643380601174780CrossrefGoogle Scholar

  • [34] Sutherland R.A., Comparison between non-residual Al, Co, Cu, Fe, Mn, Ni, Pb and Zn released by a three-step sequential extraction procedure and a dilute hydrochloric acid leach for soil and road deposited sediment. Appl. Geochem., 2002, 17, 353–365 http://dx.doi.org/10.1016/S0883-2927(01)00095-6CrossrefGoogle Scholar

  • [35] Pueyo M., Rauret G., Bacon J.R., Gomez A., Muntau H., Quevauviller Ph., López-Sánchez J.F., A new organic-rich reference material certified for its EDTA- and acetic acid-extractable contents of Cd, Cr, Cu, Ni, Pb and Zn, following collaboratively tested and harmonized procedures. J. Environ. Qual., 2001, 3, 238–242 Google Scholar

  • [36] Tessier A., Campbell P.G.C., Bisson M., Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem., 1979, 51/7, 844–851 http://dx.doi.org/10.1021/ac50043a017CrossrefGoogle Scholar

  • [37] Kersten M., Förstner U., Chemical fractionation of heavy metals in anoxic estuarine and coastal sediments. Wat. Sci. Technol., 1986, 18, 121–130 Google Scholar

  • [38] Ure A.M., Single extraction schemes for soil analysis and related applications. Sci. Tot. Environ., 1996. 178, 3–10 http://dx.doi.org/10.1016/0048-9697(95)04791-3CrossrefGoogle Scholar

  • [39] Tack F.M.G., Vossius H.A.H., Verloo M.G., A comparison between sediment metal fractions, obtained from sequential extraction and estimated from single extractions. Internat. J. Environ. Anal. Chem., 1996, 63, 61–66 http://dx.doi.org/10.1080/03067319608039810CrossrefGoogle Scholar

  • [40] James B.R., Petura J.C., Vitale R.J., Mussoline G.R., Hexavalent chromium extraction from soils: A comparison of five methods. Environ. Sci. Technol., 1995, 29: 2377–2381 http://dx.doi.org/10.1021/es00009a033CrossrefGoogle Scholar

  • [41] Vitale R., Mussoline G., Rinehimer K., Petura J., James B., Extraction of sparingly soluble chromate from soils: evaluation of methods and Eh-pH effects. Environ. Sci. Technol., 1997, 31, 390–394 http://dx.doi.org/10.1021/es960202oCrossrefGoogle Scholar

  • [42] Pettine M., Capri S., Removal of humic matter interference in the determination of Cr(VI) in soil extracts by the diphenylcarbazide method. Anal. Chim. Acta., 2005, 540, 239–246 http://dx.doi.org/10.1016/j.aca.2005.03.041CrossrefGoogle Scholar

  • [43] Szulczewski M.D., Helmke P.A., Bleam W.F., Comparision of XANES analysis and extractions to determine chromium speciation in contaminated soils. Environ. Sci. Technol., 1997, 31, 2954–2959 http://dx.doi.org/10.1021/es9701772CrossrefGoogle Scholar

  • [44] DIN 38414 S4 German Standard methods for the examination of water, waste water and sludge; group S (sludge and sediments); determination of leachability by water (S4) Google Scholar

  • [45] NEN 7343., Leaching characteristics of solid earthy and stony building and waste materials. Leaching tests. Determination of inorganic components from granular materials with the column test. Nederlands Normalisatie-Instituut (NEN). 1st edition, February 1995, Delft, 10 Google Scholar

  • [46] NEN 7349, Leaching characteristics of solid earthy and stone building and waste materials. Leaching tests. Determination of the inorganic components from granular materials with the cascade test. Nederlands Normalisatie-Instituut (NEN). 1st edition, February 1995, Delft, 11. Google Scholar

  • [47] NEN 7341, Leaching characteristics of soil, construction materials and wastes. Leaching tests determination of the avail-ability of inorganic constituents for leaching from construction materials and waste materials. Dutch Standardization Institute, 1994, Delft. Google Scholar

  • [48] Tack F.M.G., Singh S.P., Verloo M.G., Leaching behavior of Cd, Cu, Pb and Zn in surface soils derived from dredged sediments. Environ. Poll., 1999, 106, 107–114 http://dx.doi.org/10.1016/S0269-7491(99)00053-6CrossrefGoogle Scholar

  • [49] Miller W.P., Martens D.C., Zelazny L.W., Effect of sequence on extraction of trace metals from soils. Soil Sci. Soc., 1986, 46, 13–22 Google Scholar

  • [50] Quevauviller Ph., Rauret G., Ure., Bacon J., Muntau H., The certification of the extractable contents (mass fraction) of Cd, Cr, Cu, Ni, Pb and Zn in freshwater sediment following a sequential extraction procedure BCR-701. European Commission, BCR information on reference materials. EUR 17127 En. 1997, 71–73 Google Scholar

  • [51] Templeton D.M., Ariese F., Cornelis R., Danielsson L-G., Muntau H., van Leeuwen H.P., Lobinski R., Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects and methodological approaches. Pure Appl. Chem., 2000, 72, 1453–1470 http://dx.doi.org/10.1351/pac200072081453CrossrefGoogle Scholar

  • [52] Tipping E., Hetherington N.B., Hilton J., Artifacts in use of selective chemical extraction to determine distribution of metals between oxides of manganese and iron. Anal. Chem., 1985, 57, 1944–1946 http://dx.doi.org/10.1021/ac00286a035CrossrefGoogle Scholar

  • [53] Calvet R., Bourgeois S., Msaky J.J. Some experiments on extraction of heavy metals present in soil. Intern. J. Anal. Chem., 1990, 39, 31–45 http://dx.doi.org/10.1080/03067319008027680CrossrefGoogle Scholar

  • [54] Sahuquillo A., López-Sánchez J.F., Rubio R., Gauret G., Thomas R.P., Davidson C.M., Ure A.M., Use of a certified reference material for extractable trace metals to assess sources of uncertainty in the BCR three-stage extraction procedure. Anal., Chim. Acta., 1999, 382, 317–327 http://dx.doi.org/10.1016/S0003-2670(98)00754-5CrossrefGoogle Scholar

  • [55] Ciceri E., Giussani B., Pozzi A., Recchia S., Problems in the application of the three-step BCR sequential extraction to low amounts of sediments: an alternative validated route. Talanta, 2008, 76, 621–626 http://dx.doi.org/10.1016/j.talanta.2008.04.006CrossrefGoogle Scholar

  • [56] Hlavay J., Prohaska T., Weisz M., Wenzel W., Stingeder G., Detemination of trace elements bound to soils and sediment fractions. Pure Appl. Chem., 2004, 76/2, 415–442 http://dx.doi.org/10.1351/pac200476020415CrossrefGoogle Scholar

  • [57] La Force M.J., Fendorf S., Solid-phase iron characterization during common selective sequential extractions. Soil Science Society of America Journal, 2000, 64, 1608–1615 http://dx.doi.org/10.2136/sssaj2000.6451608xCrossrefGoogle Scholar

  • [58] Scheinost A.L., Kretzschmar R., Pfister S., Combining selective sequential extractions, x-ray absorption spectryscopy, and principal component analysis for quantitative zinc speciation in soil. Environ. Sci. Technol., 2002, 36, 5021–5028 http://dx.doi.org/10.1021/es025669fCrossrefGoogle Scholar

  • [59] Dold B., Speciation of the most soluble phases in a sequential extraction procedure adapted for geochemical studies of copper mine waste. J. Geochem. Explor., 2003, 80, 55–68 http://dx.doi.org/10.1016/S0375-6742(03)00182-1CrossrefGoogle Scholar

  • [60] Forster V., Heasman L., Kibblewhite M., Quality assurance in the analysis of soil from land contamination. Thomas Telford Publishing, London, UK, 1998, 901–902 Google Scholar

  • [61] Paschke A., Wennrich R., Morgenstern P., Comparison of 24h and long-term pHstat leaching tests for metal mobilization from solid matrices. Acta Hydroch., Hydrob., 1999, 27, 223–229. http://dx.doi.org/10.1002/(SICI)1521-401X(199907)27:4<223::AID-AHEH223>3.0.CO;2-6CrossrefGoogle Scholar

  • [62] van Herreweghe S., Arsenic and heavy metal contaminated soils caused by ore treatment activities, a differentiated speciation approach. PhD thesis, Katholieke Universiteit Leuven, Geology Department, 2002 Google Scholar

  • [63] van Herreweghe S., Swennen R, Cappuyns V., Vandecasteele C., Chemical associations of heavy metals and metalloids in contaminated soils near former ore treatment plants: a differentiated approach with emphasis on pHstat-leaching. J. Geochem. Explor., 2002, 76, 113–138 http://dx.doi.org/10.1016/S0375-6742(02)00232-7CrossrefGoogle Scholar

  • [64] Shtiza A., Swennen R., Cappuyns V., Tashko A., ANC / BNC and mobilization of Cr from polluted sediments in function of pH changes. Environ. Geol., 2009, 56, 1663–1678 http://dx.doi.org/10.1007/s00254-008-1263-7CrossrefGoogle Scholar

  • [65] Hursthouse A.S., The relevance of speciation in the remediation of the soils and sediments contaminated by metallic elements — an overview and examples from Central Scotland, UK. J. Environ. Monitor., 2001, 3, 49–60 http://dx.doi.org/10.1039/b006132hCrossrefGoogle Scholar

  • [66] Walter I., Martínes F., Cala V., Heavy metal speciation and phytotoxic effects of three representative sewages sludges for agricultural uses. Environ. Pollut., 2006, 139, 507–514 http://dx.doi.org/10.1016/j.envpol.2005.05.020CrossrefGoogle Scholar

  • [67] Landner L., Reuther R., A critical review of current knowledge on metals in society and environment. Kluwer Academic Publishers, Dordrecht, the Netherlands, 2004 Google Scholar

  • [68] Kotas J., Stasicka Z., Chromium occurrence in the environment and methods of its speciation. Environ. Pollut., 2000, 107, 263–283 http://dx.doi.org/10.1016/S0269-7491(99)00168-2CrossrefGoogle Scholar

  • [69] USEPA., Chromium Hexavalent (Colorimetric). Environmental Protection Agency, Washington, D.C., 1995 Google Scholar

  • [70] Burke Th., Fagliano J., Goldoft M., Hazen R.E., Iglewicz R., McKee Th., Chromite Ore Processing Residue in Hudson Country, New Jersey. Environmental Health Perspectives, 1991, 92, 131–137 http://dx.doi.org/10.2307/3431149CrossrefGoogle Scholar

  • [71] Whalley C., Hursthouse A., Rowlatt S., Iqbal-Zahid P., Vaughan H., Durant R., Chromium speciation in natural waters draining contaminated land, Glasgow, U.K. Water, Air Soil Pollution, 1999, 112, 389–405 http://dx.doi.org/10.1023/A:1005017506227CrossrefGoogle Scholar

  • [72] Farmer J.G., Thomas R.P., Graham M.C., Geelhoed J.S., Lumsdon D.G., Paterson E., Chromium speciation and fractionation in ground and surface waters in the vicinity of chromite ore processing residue disposal sites. J. Environ. Monit., 2002, 4, 235–243 http://dx.doi.org/10.1039/b108681mCrossrefGoogle Scholar

  • [73] Hillier S., Roe M.J., Geelhoed J.S., Fraser A.R., Farmer J.G., Paterson E., Role of quantitative mineralogical analysis in the investigation of sites highly contaminated by chromate ore processing residue. Sci. Tot. Environ., 2003, 308, 195–210 http://dx.doi.org/10.1016/S0048-9697(02)00680-0CrossrefGoogle Scholar

  • [74] Abbas Z., Steenari B-M., Lindqvist O., A study of Cr(VI) in ashes from fluidized bed combustion of municipal solid waste: leaching, secondary reactions and the applicability of some speciation methods. Waste Manage., 2001, 21, 725–739 http://dx.doi.org/10.1016/S0956-053X(01)00005-8CrossrefGoogle Scholar

  • [75] Shtiza A., Geogene and anthropogene signatures of chromium species occurring on industrial sites in Albania. PhD dissertation, Katholieke Universiteit Leuven. Geology Department, 2007 Google Scholar

  • [76] Shtiza A., Swennen R., Tashko A., Chromium speciation and existing natural attenuation conditions in lagoonal and pond sediments in the former chemical plant of Porto-Romano (Albania). Environ. Geol., 2008, 53, 1107–1128 http://dx.doi.org/10.1007/s00254-007-0703-0CrossrefGoogle Scholar

  • [77] Goldstein J., Newbury D., Joy DC., Echlin P., Lyman C., Lifshin E., Scanning electron microscopy and x-ray microanalysis. Plenum Press, New York, 2003 Google Scholar

  • [78] Farges F., Brown G.E., Rehr J.J., Coordination chemistry of Ti(IV) in silicates glasses and melts: I. XAFS study of titanium coordination in oxide model compounds. Geochim. Cosmochim. Ac., 1996, 60, 3023–3038 http://dx.doi.org/10.1016/0016-7037(96)00144-5CrossrefGoogle Scholar

  • [79] Zachara J.M., Ainsworth C.C., Brown G.E., Catalano J.G., McKinley J.P., Qafoku O., Smith S.C., Szecsody J.E., Traina S.J., Warner J.A. 2004. Chromium speciation and mobility in a high level nuclear waste vadose zone plume. Geochim. Cosmochim. Ac, 2004. 68, 13–30 http://dx.doi.org/10.1016/S0016-7037(03)00417-4CrossrefGoogle Scholar

  • [80] Mattigod S.V., Sposito G., Chemical modelling of trace metals equilibrium in contaminated soil solutions using the computer program GEOCHEM. In: Jenne E.A. (Ed.), Chemical modelling in aqueous systems. ACS No 93 American Chemical Society, Washington D.C., 1979, 837–856 http://dx.doi.org/10.1021/bk-1979-0093.ch037CrossrefGoogle Scholar

  • [81] USEPA., MINTEQ2, an equilibrium metal speciation model: users manual. USEPA, EPA/600/3-87/012. Athens, GA. 1987 Google Scholar

  • [82] Allison J.D., Brown D.S., Novogradac K.J., MINTEQA2/PRODEFA2: A geochemical assessment model for environmental systems-version 3.0 user’s manual: Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens, Georgia, 1990 Google Scholar

  • [83] Parkhurst D.L., User’s guide to PHREEQC: A computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations: U.S. Geological Survey Water-Resources Investigations Report 95-4227, 1995, 1–143 Google Scholar

  • [84] Meeussen J.C.L., ORCHESTRA: An object oriented framework for implementing chemical equilibrium models. Environ. Sci. Technol., 2003, 37, 1175–1182 http://dx.doi.org/10.1021/es025597sCrossrefGoogle Scholar

  • [85] Gustafsson J.P., Visual MINTEQ version 2.4, A chemical equilibrium model for the calculation of metal speciation, solubility equilibria etc. for environmental systems. 2006, Website: http://www.lwr.kth.se/English/OurSoftware/vMINTEQ/index.htm Google Scholar

  • [86] Theocharopoulos S., Wagner G., Sprengart J., Mohr M-E., Desaules A., Muntau H., Christou M., Quevauviller Ph., European soil sampling guidelines for soil pollution studies. Sci. Tot. Environ., 2001, 264, 51–62 http://dx.doi.org/10.1016/S0048-9697(00)00611-2CrossrefGoogle Scholar

  • [87] Wagner G., Mohr M-E., Sprengart J., Desaules A., Muntau H., Theocharopoulos S., Quevauviller Ph., Objectives, concept, and design of the CEEM soil project. Sci. Tot. Environ., 2001, 264, 3–15 http://dx.doi.org/10.1016/S0048-9697(00)00608-2CrossrefGoogle Scholar

  • [88] Fairbrother A., Wenstel R., Sappington K., Wood W., Framework for metals risk assessment. Ecotox. Environ. Safe., 2007, 68, 145–227 http://dx.doi.org/10.1016/j.ecoenv.2007.03.015CrossrefGoogle Scholar

  • [89] Nagourney S.J., Wilson S.A., Buckley B., Kingston H.M., Yang S.Y., and Long S.E., Development of a Standard Reference Material for CrVI in Contaminated Soil. J. Anal. Atom. Spectrom., 2008, 23, 1550–1554 http://dx.doi.org/10.1039/b808488bCrossrefGoogle Scholar

  • [90] van der Sloot H., Horizontal standardization and harmonization of leaching tests methods for waste, secondary raw materials construction materials and (contaminated) soil. Proceedings of WASCON San-Sebastian, Spain, 2003 Google Scholar

  • [91] Filgueiras A.V., Lavilla I., Bendicho C., Chemical sequential extraction for metal partitioning in environmental solid samples. J. Env. Monit. 2002, 4, 823–857 http://dx.doi.org/10.1039/b207574cCrossrefGoogle Scholar

About the article

Published Online: 2011-03-27

Published in Print: 2011-03-01

Citation Information: Open Geosciences, Volume 3, Issue 1, Pages 53–70, ISSN (Online) 2391-5447, DOI: https://doi.org/10.2478/v10085-010-0033-4.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Valery P. Kalinichenko, Alexey P. Glinushkin, Michael S. Sokolov, Vladimir E. Zinchenko, Tatiana M. Minkina, Saglara S. Mandzhieva, Svetlana N. Sushkova, Dmitry A. Makarenkov, Sirojdin Y. Bakoyev, and Ljudmila P. Il’ina
Journal of Soils and Sediments, 2018
Anatoly P. Endovitsky, Abdulmalik A. Batukaev, Tatiana M. Minkina, Valery P. Kalinitchenko, Saglara S. Mandzhieva, Svetlana N. Sushkova, Nikolai A. Mischenko, Sirojdin Y. Bakoyev, Ali A. Zarmaev, and Vaha U. Jusupov
Journal of Geochemical Exploration, 2016
Fulvia Risso, Riccardo Narizzano, Massimo Ottonelli, Alfredo Magherini, Michele Giampieri, and Eugenio Carlini
Analytical Methods, 2012, Volume 4, Number 2, Page 570

Comments (0)

Please log in or register to comment.
Log in