Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year

IMPACT FACTOR 2017: 0.696
5-year IMPACT FACTOR: 0.736

CiteScore 2017: 0.89

SCImago Journal Rank (SJR) 2017: 0.323
Source Normalized Impact per Paper (SNIP) 2017: 0.674

Open Access
See all formats and pricing
More options …

The role of collapsing and cone rafting on eruption style changes and final cone morphology: Los Morados scoria cone, Mendoza, Argentina

Karoly Németh / Corina Risso / Francisco Nullo / Gabor Kereszturi
  • Volcanic Risk Solutions, Massey University, Private Bag 11 222, Palmerston North, New Zealand
  • Geological Institute of Hungary, Stefánia út 14, Budapest, 1143, Hungary
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-06-26 | DOI: https://doi.org/10.2478/s13533-011-0008-4


Payún Matru Volcanic Field is a Quaternary monogenetic volcanic field that hosts scoria cones with perfect to breached morphologies. Los Morados complex is a group of at least four closely spaced scoria cones (Los Morados main cone and the older Cones A, B, and C). Los Morados main cone was formed by a long lived eruption of months to years. After an initial Hawaiian-style stage, the eruption changed to a normal Strombolian, conebuilding style, forming a cone over 150 metres high on a northward dipping (∼4°) surface. An initial cone gradually grew until a lava flow breached the cone’s base and rafted an estimated 10% of the total volume. A sudden sector collapse initiated a dramatic decompression in the upper part of the feeding conduit and triggered violent a Strombolian style eruptive stage. Subsequently, the eruption became more stable, and changed to a regular Strombolian style that partially rebuilt the cone. A likely increase in magma flux coupled with the gradual growth of a new cone caused another lava flow outbreak at the structurally weakened earlier breach site. For a second time, the unstable flank of the cone was rafted, triggering a second violent Strombolian eruptive stage which was followed by a Hawaiian style lava fountain stage. The lava fountaining was accompanied by a steady outpour of voluminous lava emission accompanied by constant rafting of the cone flank, preventing the healing of the cone. Santa Maria is another scoria cone built on a nearly flat pre-eruption surface. Despite this it went through similar stages as Los Morados main cone, but probably not in as dramatic a manner as Los Morados. In contrast to these examples of large breached cones, volumetrically smaller cones, associated to less extensive lava flows, were able to heal raft/collapse events, due to the smaller magma output and flux rates. Our evidence shows that scoria cone growth is a complex process, and is a consequence of the magma internal parameters (e.g. volatile content, magma flux, recharge, output volume) and external conditions such as inclination of the pre-eruptive surface where they grew and thus gravitational instability.

Keywords: scoria cone; pahoehoe; aa lava; Strombolian, Hawaiian; lava spatter; clastogenic lava flow; debris avalanche; agglutinate; breached cone

  • [1] Valentine G.A., Gregg T.K.P., Continental basaltic volcanoes — Processes and problems. J. Volcanol. Geoth. Res., 2008, 177, 857–873 http://dx.doi.org/10.1016/j.jvolgeores.2008.01.050CrossrefGoogle Scholar

  • [2] Németh K., Monogenetic volcanic fields: Origin, sedimentary record, and relationship with polygenetic volcanism. In: Cañón-Tapia E., Szakács A. (Eds), What Is a Volcano Geol. S. Am. S., 2010, 470, 43–67 Google Scholar

  • [3] Walker G.P.L., Basaltic-volcano systems, In: Prichard H.M., Alabaster T., Harris N.B.W., Nearly C.R. (Eds), Magmatic Processes and Plate Tectonics. Geological Society, London, Special Publications, 76, 3–38, 1993 Google Scholar

  • [4] Brenna M., Cronin S.J., Smith I.E.M., Sohn Y.K., Németh K., Mechanisms driving polymagmatic activity at a monogenetic volcano, Udo, Jeju Island, South Korea. Contrib. Miner. Petr., 2010, 160, 931–950, DOI: 10.1007/s00410-010-0515-1 http://dx.doi.org/10.1007/s00410-010-0515-1CrossrefGoogle Scholar

  • [5] Kereszturi G., Csillag G., Németh K., Sebe K., Kadosa B., Jáger V., Volcanic architecture, eruption mechanism and landform evolution of a Plio/Pleistocene intracontinental basaltic polycyclic monogenetic volcano from the Bakony-Balaton Highland Volcanic Field, Hungary. Cent. Eur. J. Geosci., 2010, 2, 362–384, DOI: 10.2478/v10085-010-0019-2 http://dx.doi.org/10.2478/v10085-010-0019-2CrossrefGoogle Scholar

  • [6] Vespermann D., Schmincke H.-U., Scoria cones and tuff rings. In: Sigurdsson H., Houghton B.F., McNutt S.R., Rymer H., Stix J. (Eds), Encyclopedia of Volcanoes. Academic Press, 2000, 683–694 Google Scholar

  • [7] Luhr J.F., Simkin T., Paricutin. The volcano born in a Mexican cornfield. Geosciences Press, Phoenix, 1993 Google Scholar

  • [8] McGetchin T.R., Settle M., Chouet B.A., Geologic and photoballistic studies at Mt Etna and Stromboli. T. Am. Geophys. Un., 1972, 53, 1–533 Google Scholar

  • [9] Chouet B.A., Hamisevi N., McGetchin T.R., Photoballistic analysis of main volcanic jet, Stromboli, Italy. T. Am. Geophys. Un., 1973, 54, 1–510 Google Scholar

  • [10] Chouet B., Hamisevi N., McGetchin T.R., Photobal-listics of volcanic jet activity at Stromboli, Italy. J. Geophys. Res., 1974, 79, 4961–4976 http://dx.doi.org/10.1029/JB079i032p04961CrossrefGoogle Scholar

  • [11] McGetchin T.R., Settle M., Chouet B.A., Cinder cone growth modeled after Northeast Crater, Mount-Etna, Sicily. J. Geophys. Res., 1974, 79, 3257–3272 http://dx.doi.org/10.1029/JB079i023p03257CrossrefGoogle Scholar

  • [12] Wilson L., Head J.W., Ascent and eruption of basaltic magma on Earth and Moon. J. Geophys. Res., 1981, 86, 2971–3001 http://dx.doi.org/10.1029/JB086iB04p02971CrossrefGoogle Scholar

  • [13] Head J.W., Wilson L., Basaltic pyroclastic eruptions: influence of gas release patterns and volume fluxes on fountain structure, and the formation of cinder cones, spatter cones, rootless flows, lava ponds and lava flows. J. Volcanol. Geoth. Res., 1989, 37, 261–271 http://dx.doi.org/10.1016/0377-0273(89)90083-8CrossrefGoogle Scholar

  • [14] Riedel C., Ernst G.G.J., Riley M., Controls on the growth and geometry of pyroclastic constructs. J. Volcanol. Geoth. Res., 2003, 127, 121–152 http://dx.doi.org/10.1016/S0377-0273(03)00196-3CrossrefGoogle Scholar

  • [15] Houghton B.F., Hackett W.R., Strombolian and phreatomagmatic deposits of Ohakune Craters, Ru-apehu, New Zealand; a complex interaction between external water and rising basaltic magma. J. Volcanol. Geoth. Res., 1984, 21, 207–231 http://dx.doi.org/10.1016/0377-0273(84)90023-4CrossrefGoogle Scholar

  • [16] Houghton B.F., Schmincke H.U., Rothenberg scoria cone, East Eifel; a complex strombolian and phreatomagmatic volcano. B. Volcanol. 1989, 52, 28–48 http://dx.doi.org/10.1007/BF00641385CrossrefGoogle Scholar

  • [17] Houghton B.F., Wilson C.J.N., Smith I.E.M., Shallow-seated controls on styles of explosive basaltic volcanism: a case study from New Zealand. J. Volcanol. Geoth. Res., 1999, 91, 97–120 http://dx.doi.org/10.1016/S0377-0273(99)00058-XCrossrefGoogle Scholar

  • [18] Genareau K., Valentine G.A., Moore G., Hervig R.L., Mechanisms for transition in eruptive style at a mono-genetic scoria cone revealed by microtextural analyses (Lathrop Wells volcano, Nevada, USA). B. Volcanol., 2010, 72, 593–607 http://dx.doi.org/10.1007/s00445-010-0345-zCrossrefGoogle Scholar

  • [19] Keating G.N., Valentine G.A., Krier D.J., Perry F.V., Shallow plumbing systems for small-volume basaltic volcanoes. B. Volcanol., 2008, 70, 563–582 http://dx.doi.org/10.1007/s00445-007-0154-1CrossrefGoogle Scholar

  • [20] Doubik P., Hill B.E., Magmatic and hydromagmatic conduit development during the 1975 Tolbachik Eruption, Kamchatka, with implications for hazards assessment at Yucca Mountain, NV. J. Volcanol. Geoth. Res., 1999, 91, 43–64 http://dx.doi.org/10.1016/S0377-0273(99)00052-9CrossrefGoogle Scholar

  • [21] Cashman K.V., Sturtevant B., Papele P., Navon O., Magmatic fragmentation. In: Sigurdsson H., Houghton B., McNutt S., Rymer H., Stix J. (Eds), Encyclopedia of Volcanoes. Academic Press, 2000, 421–430 Google Scholar

  • [22] Wolff J.A., Sumner J.M., Lava fountains and their products. In: Sigurdsson H., Houghton B.F., McNutt S.R., Rymer H., Stix J. (Eds), Encyclopedia of Volcanoes. Academic Press, 2000, 321–329 Google Scholar

  • [23] Walker G.P.L., Basaltic volcanoes and volcanic systems. In: Sigurdsson H., Houghton B.F., McNutt S.R., Rymer H., Stix J. (Eds), Encyclopedia of Volcanoes. Academic Press, 2000, 283–290 Google Scholar

  • [24] Wilson L., Parfitt E.A., Head J.W., Explosive volcanic-eruptions.8. The role of magma recycling in controlling the behavior of Hawaiian-style lava fountains. Geophys. J. Int., 1995, 121, 215–225 http://dx.doi.org/10.1111/j.1365-246X.1995.tb03522.xCrossrefGoogle Scholar

  • [25] Keating G.N., Pelletier J.D., Valentine G.A., Statham W., Evaluating suitability of a tephra dispersal model as part of a risk assessment framework. J. Volcanol. Geoth. Res., 2008, 177, 397–404 http://dx.doi.org/10.1016/j.jvolgeores.2008.06.007CrossrefGoogle Scholar

  • [26] Valentine G.A., Krier D.J., Perry F.V., Heiken G., Eruptive and geomorphic processes at the Lathrop Wells scoria cone volcano. J. Volcanol. Geoth. Res., 2007, 161, 57–80 http://dx.doi.org/10.1016/j.jvolgeores.2006.11.003CrossrefGoogle Scholar

  • [27] Valentine G.A., Perry F.V., Krier D., Keating G.N., Kelley R.E., Coghill A.H., Small-volume basaltic volcanoes: Eruptive products and processes, and posteruptive geomorphic evolution in Crater Flat (Pleistocene), southern Nevada. Geol. Soc. Am. Bull., 2006, 118, 1313–1330 http://dx.doi.org/10.1130/B25956.1CrossrefGoogle Scholar

  • [28] Arrighi S., Principe C., Rosi M., Violent strombolian and subplinian eruptions at Vesuvius during post-1631 activity. B. Volcanol., 2001, 63, 126–150 http://dx.doi.org/10.1007/s004450100130CrossrefGoogle Scholar

  • [29] Thordarson T., Self S., The Laki (Skaftar-Fires) and Grimsvotn Eruptions in 1783–1785. B. Volcanol., 1993, 55, 233–263 http://dx.doi.org/10.1007/BF00624353CrossrefGoogle Scholar

  • [30] Martin U., Nemeth K., How Strombolian is a “Strombolian” scoria cone? Some irregularities in scoria cone architecture from the Transmexican Volcanic Belt, near Volcan Ceboruco, (Mexico) and Al Haruj (Libya). J. Volcanol. Geoth. Res., 2006, 155, 104–118 http://dx.doi.org/10.1016/j.jvolgeores.2006.02.012CrossrefGoogle Scholar

  • [31] Foshag W.F., Gonzalez R.J., Birth and development of Paricutin volcano, Mexico. United States Geological Survey Bulletin, 1956, 965-D, 355–489 Google Scholar

  • [32] Newton A.J., Metcalfe S.E., Davies S.J., Cook G., Barker P., Telford R.J., Late Quaternary volcanic record from lakes of Michoacan, central Mexico. Quaternary Sci. Rev., 2005, 24, 91–104 http://dx.doi.org/10.1016/j.quascirev.2004.07.008CrossrefGoogle Scholar

  • [33] Hasenaka T., Carmichael I.S.E., The cinder cones of Michoacán-Guanajuato, central Mexico: their age, volume and distribution, and magma discharge rate. J. Volcanol. Geoth. Res., 1985, 25, 105–124 http://dx.doi.org/10.1016/0377-0273(85)90007-1CrossrefGoogle Scholar

  • [34] Martin, U. and Németh, K., How Strombolian is a “Strombolian” scoria cone? Some irregularities in scoria cone architecture from the Transmexican Volcanic Belt, near Volcan Ceboruco, (Mexico) and Al Haruj (Libya). J. Volcanol. Geoth. Res., 2006, 155, 104–118 http://dx.doi.org/10.1016/j.jvolgeores.2006.02.012CrossrefGoogle Scholar

  • [35] Vergniolle S., Brandeis G., Mareschal J.C., Strombolian explosions. 2. Eruption dynamics determined from acoustic measurements. J. Geophys. Res. Sol. Ea., 1996, 101, 20449–20466 http://dx.doi.org/10.1029/96JB01925CrossrefGoogle Scholar

  • [36] Vergniolle S., Brandeis G., Strombolian explosions. 1. A large bubble breaking at the surface of a lava column as a source of sound. J. Geophys. Res. Sol. Ea., 1996, 101, 20433–20447 http://dx.doi.org/10.1029/96JB01178Google Scholar

  • [37] Vergniolle S., Bubble size distribution in magma chambers and dynamics of basaltic eruptions. Earth Planet. Sc. Lett., 1996, 140, 269–279 http://dx.doi.org/10.1016/0012-821X(96)00042-8CrossrefGoogle Scholar

  • [38] Vergniolle S., Manga M., Hawaiian and strombolian eruptions. In: Sigurdsson H., Houghton B.F., McNutt S.R., Rymer H., Stix, J. (Eds), Encyclopedia of Volcanoes, Academic Press, 2000, 447–461 Google Scholar

  • [39] Jaupart C., Vergniolle S., Laboratory Models of Hawaiian and Strombolian Eruptions. Nature, 1988, 331, 58–60 http://dx.doi.org/10.1038/331058a0CrossrefGoogle Scholar

  • [40] Blackburn E.A., Sparks R.S.J., Mechanism and dynamics of strombolian activity. J. Geol. Soc. London, 1976, 132, 429–440 http://dx.doi.org/10.1144/gsjgs.132.4.0429CrossrefGoogle Scholar

  • [41] Jaupart C., Magma ascent at shallow levels. In: Sigurdsson H., Houghton B.F., McNutt S.R., Rymer H., Stix J. (Eds), Encyclopedia of Volcanoes, Academic Press, 2000, 237–245 Google Scholar

  • [42] Parfitt E.A., A discussion of the mechanisms of explosive basaltic eruptions. J. Volcanol. Geoth. Res., 2004, 134, 77–107 http://dx.doi.org/10.1016/j.jvolgeores.2004.01.002CrossrefGoogle Scholar

  • [43] Parfitt E.A., Wilson L., Explosive volcanic-eruptions. 9. The transition between Hawaiian-style lava fountaining and Strombolian explosive activity. Geophys. J. Int., 1995, 121, 226–232 http://dx.doi.org/10.1111/j.1365-246X.1995.tb03523.xCrossrefGoogle Scholar

  • [44] Parfitt E.A., Wilson L., Neal C.A., Factors influencing the height of Hawaiian lava fountains: Implications for the use of fountain height as an indicator of magma gas content. B. Volcanol., 1995, 57, 440–450 http://dx.doi.org/10.1007/BF00300988CrossrefGoogle Scholar

  • [45] Valentine G.A., Krier D., Perry F.V., Heiken G., Scoria cone construction mechanisms, Lathrop Wells volcano, southern Nevada, USA. Geology, 2005, 33, 629–632 http://dx.doi.org/10.1130/G21459.1CrossrefGoogle Scholar

  • [46] Carracedo J.C., Rodriguez Badiola E., Soler V., The 1730–1736 eruption of Lanzarote, Canary slands: a long, high-magnitude basaltic fissure eruption. J. Volcanol. Geoth. Res. 1992, 53, 239–250 http://dx.doi.org/10.1016/0377-0273(92)90084-QCrossrefGoogle Scholar

  • [47] Sumner J.M., Blake S., Matela R.J., Wolff J.A., Spatter. J. Volcanol. Geoth. Res., 2005, 142, 49–65 http://dx.doi.org/10.1016/j.jvolgeores.2004.10.013CrossrefGoogle Scholar

  • [48] Sumner J.M., Formation of clastogenic lava flows during fissure eruption and scoria cone collapse: the 1986 eruption of Izu-Oshima Volcano, eastern Japan. B. Volcanol., 1998, 60, 195–212 http://dx.doi.org/10.1007/s004450050227CrossrefGoogle Scholar

  • [49] Németh K., The morphology and origin of wide craters at Al Haruj al Abyad, Libya: maars and phreatomagmatism in a large intracontinental flood lava field? Zeitschrift für Geomorphologie, 2004, 48, 417–439 Google Scholar

  • [50] Németh K., Suwesi K.S., Peregi Z., Gulácsi Z., Ujszászi J., Plio/Pleistocene flood basalt related scoria and spatter cones, rootless lava flows, and pit craters, Al Haruj Al Abyad, Libya. Geolines, 2003, 98–103 Google Scholar

  • [51] Holm R.F., Significance of agglutinate mounds on lava flows associated with monogenetic cones — An example at Sunset-crater, Northern Arizona. Geol. Soc. Am. Bull., 1987, 99, 319–324 http://dx.doi.org/10.1130/0016-7606(1987)99<319:SOAMOL>2.0.CO;2CrossrefGoogle Scholar

  • [52] Bermúdez A., Delpino D., Frey F., Saal A., Los basaltos de retroarco extraandinos. In: Ramos V. (Ed), Geología y Recursos Naturales de Mendoza — 12° Congreso Geológico, 1993 Google Scholar

  • [53] Bermúdez A., Los basaltos post-pliocenos entre los 36° y 37° de latitud, provincia de Mendoza, Argentina., IV Congreso Geológico Chileno, Actas (Antofagasta). 1985, 3, 52–67 Google Scholar

  • [54] Cobbold P.R., Rosello E.A., Aptian to recent compressional deformation, foothills of the Neuquén basin, Argentina. Mar. Petrol. Geol., 2003, 20, 429–443 http://dx.doi.org/10.1016/S0264-8172(03)00077-1CrossrefGoogle Scholar

  • [55] Kay S.M., Burns W.M., Copeland P.C., Mancilla O., Upper Cretaceous to Holocene magmatism and evidence for transiente miocene shallowing of the andean subduction zone under the northern Neuquén basin. In: Kay S.M., Ramos V.A. (Eds), Evolution of an Andean margin: A tectonic and magmatic view from the Andes to the Neuquén basin (35°–39°S lat). Geol. S. Am. S., 407, 19–60, DOI: 10.1130/2006.2407(02), 2006 CrossrefGoogle Scholar

  • [56] Galland O., Hallot E., Cobbold P.R., Buffet, G., Volcanism in a compressional Andean setting: A structural and geochronological study of Tromen volcano (Neuquén province, Argentina). Tectonics, 2007, 26:, TC4010, DOI:10.1029/2006TC002011, 24 p. CrossrefGoogle Scholar

  • [57] Folguera A., Naranjo J.A., Orihashi Y., Sumino H., Nagao K., Polanco E. Ramos V.A., Retroarc volcanism in the northern San Rafael Block (34°–35°30′S), southern Central Andes: Occurrence, age, and tectonic setting. J. Volcanol. Geoth. Res., 2009, 186, 169–185 http://dx.doi.org/10.1016/j.jvolgeores.2009.06.012CrossrefGoogle Scholar

  • [58] Quidelleur X., Carlut J., Tchilinguirian P., Germa A., Gillot P.Y., Paleomagnetic directions from mid-latitude ssites in the southern hemisphere (Argentina): Contribution to time averaged field models. Phys. Earth Planet. In., 2009, 172, 199–209 http://dx.doi.org/10.1016/j.pepi.2008.09.012CrossrefGoogle Scholar

  • [59] Germa A., Quidelleur X., Gillot P.Y., Tchilinguirian P., Volcanic evolution of the back-arc Pleistocene Payun Matru Volcanic Field (Argentina). J. S. Am. Earth Sci., 2010, 29, 717–750 http://dx.doi.org/10.1016/j.jsames.2010.01.002CrossrefGoogle Scholar

  • [60] Kay S., Magmatic sources, tectonic setting and causes of Tertiary to recent Patagonian plateau magmatism (36° S to 52° S latitude). Actas del XV Congreso Geológico Argentino, Calafate., 2002, Actas III, 95–100 Google Scholar

  • [61] Ramos V.A., Kay S.M., Overview of the tectonic evolution of southern Central Andes of Mendoza and Neuquén (35°–39°S lat). In: Kay S.M., Ramos V.A. (Eds), Evolution of an Andean margin: A tectonic andd magmatic view from the Andes to the Neuquén basin (35°–39°S lat). Geol. S. Am. S., 407, 1–17, 2006 Google Scholar

  • [62] Ramos V.A., Folguera A., Payenia volcanic province in the Southern Andes: An appraisal of an exceptional Quaternary tectonic setting. J. Volcanol. Geoth. Res., 2010, [in press], DOI:10.1016/j.jvolgeores.2010.09.008 CrossrefGoogle Scholar

  • [63] Ramos V.A., Anatomy and global contex of the Andes: Main gelogic features and tge Andean orogenic cycle. In: Kay S.M., Ramos V.A., Dickinson W.R. (Eds), Backbone of Americas: Shallow ssubduction, Plateau Uplift, and Ridge and Terrane Collision. Geol. Soc. Am. Mem., 204, 31–65. DOI: 10.1130/2009.1204(02), 2009 CrossrefGoogle Scholar

  • [64] Llambías, E., Bertotto, G., Risso, C. and Hernando, I., El volcanismo cuaternario en el retroarco de Payunia: una revisión. Revista de la Asociación Geológica Argentina, 2010, [in press] Google Scholar

  • [65] González Díaz E.F., Descripción Geológica de la Hoja 30d, Payún Matrú, Servicio Nacional Minero Geológico. Boletín Buenos Aires, 1972, 130, 1–92 Google Scholar

  • [66] Llambías E.J., Geología y petrología delvolcán Payún Matrú, Mendoza. Acta Geológica Lilloan, 1966, 7, 265–310 Google Scholar

  • [67] Pasguarè C., Bistacchi A., Francalanci L., Bertotto G.W., Boari E., Massironi M., Rossotti A., Very long pahoehoe basaltic lava flows in the Payenia volcanic province (Mendoza and La Pampa), Argentina. Re-vista de la Asociación Geológica Argentina, 2008, 63, 131–149 Google Scholar

  • [68] Nullo F., Hoja Geológica Cerro Campanario [1:250.000 Unpublished Geological Map and Report], Servicio Geológico Minero Argentino (SEGEMAR) [Buenos Aires]. 1985 Google Scholar

  • [69] Hernando I., Llambías E.J., González P.D., Historia eruptiva y formación de la caldera del volcán Payún Matrú, retroarco andino del sureste de Mendoza. 17° Congreso Geológico Argentino, Jujuy, Actas, 2008, 1361–1362 Google Scholar

  • [70] Bermúdez A., Delpino D., La Provincia Basáltica Andino Cuyana (35–37°L.S.). Revista de la Asociación Geológica Argentina, 1989, 44, 35–55 Google Scholar

  • [71] Risso C., Nemeth K., Nullo F., Field Guide Payún Matru and Llancanelo Volcanics Fields, Malargüe — Mendoza. 3IMC. 3° International Maar Conference, April 14–17, 2009 [Guía de Campo a los campos volcánicos de Payún Matru y Llancanelo, Malargüe- Mendoza. 3° Conferencia Internacional sobre Maares, 14–17 April, 2009, Malargüe, Argentina] [in English and Spanish], Buenos Aires, 1–28, 2009 Google Scholar

  • [72] Inbar M., Risso C., A morphological and morphometric analysis of a high density cinder cone volcanic field — Payún Matru, south-central Andes, Argentina. Zeitschrift für Geomorphologie, 2001, 45, 321–343 Google Scholar

  • [73] Marchetti D.W., Cerling T.E., Evenson E.B., Gosse J.C., Martínez O., Cosmogenic exposures ages of lava flows that temporarily dammed the Río Grande and Río Salado, Medoza Province, Argentina. In: Kay S.M., Ramos V. (Eds), Backbone of the Americas, Patagonia to Alaska. Asociación Geológica Argentina, D9, 66, 2006 Google Scholar

  • [74] Scandone R., Giacomelli L., Speranza F.F., Persistent activity and violent strombolian eruptions at Vesuvius between 1631 and 1944. J. Volcanol. Geoth. Res., 2008, 170, 167–180 http://dx.doi.org/10.1016/j.jvolgeores.2007.09.014CrossrefGoogle Scholar

  • [75] Wong L.J., Larsen J.F., The Middle Scoria sequence: A Holocene violent strombolian, subplinian and phreatomagmatic eruption of Okmok volcano, Alaska. B. Volcanol., 72, 17–31 Google Scholar

  • [76] Pioli L., Azzopardi B.J., Cashman K.V., Controls on the explosivity of scoria cone eruptions: Magma segregation at conduit junctions. J. Volcanol. Geoth. Res., 2009, 186, 407–415 http://dx.doi.org/10.1016/j.jvolgeores.2009.07.014CrossrefGoogle Scholar

  • [77] Guilbaud M.N., Siebe C., Agustin-Flores J., Eruptive style of the young high-Mg basaltic-andesite Pelagatos scoria cone, southeast of M,xico City. B. Volcanol., 2009, 71, 859–880 http://dx.doi.org/10.1007/s00445-009-0271-0CrossrefGoogle Scholar

  • [78] Di Traglia F., Cimarelli C., de Rita D., Torrente D.G., Changing eruptive styles in basaltic explosive volcanism: Examples from Croscat complex scoria cone, Garrotxa Volcanic Field (NE Iberian Peninsula). J. Volcanol. Geoth. Res., 2009, 180, 89–109 http://dx.doi.org/10.1016/j.jvolgeores.2008.10.020CrossrefGoogle Scholar

  • [79] Pioli L., Erlund E., Johnson E., Cashman K., Wallace R., Rosi M., Granados H.D., Explosive dynamics of violent Strombolian eruptions: The eruption of Paricutin Volcano 1943–1952 (Mexico). Earth Planet. Sc. Lett., 2008, 271, 359–368 http://dx.doi.org/10.1016/j.epsl.2008.04.026CrossrefGoogle Scholar

  • [80] Riggs N.R., Duffield W.A., Record of complex scoria cone eruptive activity at Red Mountain, Arizona, USA, and implications for monogenetic mafic volcanoes. J. Volcanol. Geoth. Res., 2008, 178, 763–776 http://dx.doi.org/10.1016/j.jvolgeores.2008.09.004CrossrefGoogle Scholar

  • [81] Ort M.H., Elson M.D., Anderson K.C., Duffield W.A., Samples T.L., Variable effects of cinder-cone eruptions on prehistoric agrarian human populations in the American southwest. J. Volcanol. Geoth. Res., 2008, 176, 363–376 http://dx.doi.org/10.1016/j.jvolgeores.2008.01.031CrossrefGoogle Scholar

  • [82] Ort M.H., Elson M.D., Anderson K.C., Duffield W.A., Hooten J.A., Champion, D.E. and Waring, G., Effects of scoria-cone eruptions upon nearby human communities. Geol. Soc. Am. Bull., 2008, 120, 476–486 http://dx.doi.org/10.1130/B26061.1CrossrefGoogle Scholar

About the article

Published Online: 2011-06-26

Published in Print: 2011-06-01

Citation Information: Open Geosciences, Volume 3, Issue 2, Pages 102–118, ISSN (Online) 2391-5447, DOI: https://doi.org/10.2478/s13533-011-0008-4.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Ung San Ahn
Journal of the geological society of Korea, 2015, Volume 51, Number 1, Page 1
Audray Delcamp
Geosphere, 2014, Volume 10, Number 5, Page 998
Gábor Kereszturi, Károly Németh, Shane J. Cronin, Jonathan Procter, and Javier Agustín-Flores
Journal of Volcanology and Geothermal Research, 2014, Volume 286, Page 101
Koji Kiyosugi, Yoshiyuki Horikawa, Takashi Nagao, Tetsumaru Itaya, Charles B. Connor, and Kazuhiro Tanaka
Bulletin of Volcanology, 2014, Volume 76, Number 1
Emanuele Intrieri, Federico Di Traglia, Chiara Del Ventisette, Giovanni Gigli, Francesco Mugnai, Guido Luzi, and Nicola Casagli
Geomorphology, 2013, Volume 201, Page 60
Gábor Kereszturi, Adelina Geyer, Joan Martí, Károly Németh, and F. Javier Dóniz-Páez
Bulletin of Volcanology, 2013, Volume 75, Number 7
Teresa Nolesini, Federico Di Traglia, Chiara Del Ventisette, Sandro Moretti, and Nicola Casagli
Geomorphology, 2013, Volume 180-181, Page 242
Gábor Kereszturi, Gyozo Jordan, Károly Németh, and Javier F. Dóniz-Páez
Bulletin of Volcanology, 2012, Volume 74, Number 9, Page 2171
Alessandro Fornaciai, Massimiliano Favalli, Dávid Karátson, Simone Tarquini, and Enzo Boschi
Journal of Volcanology and Geothermal Research, 2012, Volume 217-218, Page 56

Comments (0)

Please log in or register to comment.
Log in