Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year

IMPACT FACTOR 2017: 0.696
5-year IMPACT FACTOR: 0.736

CiteScore 2017: 0.89

SCImago Journal Rank (SJR) 2017: 0.323
Source Normalized Impact per Paper (SNIP) 2017: 0.674

Open Access
See all formats and pricing
More options …

Detection of the near surface structure through a multidisciplinary geophysical approach

Eleni Kokinou
  • Laboratory of Geophysics and Seismology, Department of Natural Resources and Environment, Technological Educational Institute Crete, Crete, Greece
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Apostolos Sarris
  • Laboratory of Geophysical-Satellite Remote Sensing & Archaeo-enviroment, Institute for Mediterranean Studies, Foundation for Research & Technology - Hellas, Crete, Greece
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-12-14 | DOI: https://doi.org/10.2478/s13533-011-0034-2


The present survey aimed to image the subsurface structure, including karstic voids, and to evaluate the extent of the heterogeneities that can result in potentially dangerous collapse of road segments overlying these features. A multidisciplinary geophysical approach (seismic refraction, frequency domain electromagnetic and ground penetrating radar) in combination with a detailed geological survey indicated the presence of tectonic faults as well as velocity and conductivity anomalies along an old road within the area of Akrotiri at Chania (Crete). Due to the presence of subsurface fuel pipes, perpendicular to the direction of the road, 2D resistivity imaging was excluded from the applied geophysical methods.

Interpretation of the geophysical data revealed that the section of the road investigated overlies prominent voids attributed mostly to karst features. The conductivity and velocity anomalies are interpreted to indicate an area where the host limestone rock has been downthrown by faulting and associated karstification. The continuation of this fault zone was observed in the slope of the road during later excavations. Interpretation, using geographic information systems (GIS) to integrate data, allowed these controls and relationships to be understood and monitored. The above methodology was proved successful for areas where the application of resistivity method is not possible.

Keywords: Tectonic fault; karstic void; shallow geophysics

  • [1] Epting J., Huggenberger P., Glur, L., Integrated investigations of karst phenomena in urban environments. Eng. Geol., 2009, 109, 273–289, doi:10.1016/j.enggeo.2009.08.013 http://dx.doi.org/10.1016/j.enggeo.2009.08.013Web of ScienceCrossrefGoogle Scholar

  • [2] Kokinou E., Papadopoulos I., Vallianatos F., A geophysical survey on marls of Heraklion city in Crete Island (Southern Hellenic Arc, Greece). Proceedings of the 2nd International Conference on Engineering Mechanics, Structures, Engineering Geology (EMESEG’ 09), Rhodes, Greece, 2009, 202–207 Google Scholar

  • [3] Delle Rose M., Leucci G., Towards an integrated approach for characterization of sinkhole hazards in urban environments: the unstable coastal site of Casalabate, Lecce, country-regionItaly. J. Geophys. Eng., 2010, 7, 143–154, doi:10.1088/1742-2132/7/2/004 http://dx.doi.org/10.1088/1742-2132/7/2/004Web of ScienceCrossrefGoogle Scholar

  • [4] Leucci G., De Giorgi L., Microgravimetric and ground penetrating radar geophysical methods to map the shallow karstic cavities network in a coastal area (Marina Di Capilungo, Lecce, Italy). Exploration Geophysics, 2010, 41, 178–188 http://dx.doi.org/10.1071/EG09029CrossrefWeb of ScienceGoogle Scholar

  • [5] Gabbani G., Lavorini G., Pacini L., Geophysical and geotechnical investigation of an areal landslide in the Tuscan Northern Apennines (Italy) with an extensive consolidation design. Proceedings for the EEGS-ES 2000 Annual Meeting, Bochum, Germany Google Scholar

  • [6] Fenning P.J., Brown A.J., Nind D., Geophysical surveys across a ground subsidence feature. Proceedings for SAGEEP 2000, Washington D.C, 2000, 857–866 Google Scholar

  • [7] Griffiths D.H., Barker, R.D., Two-dimensional resistivity imaging and modelling in areas of complex geology. Journal of Applied Geophysics, 1993, 29, 211–226 http://dx.doi.org/10.1016/0926-9851(93)90005-JCrossrefGoogle Scholar

  • [8] El-Hussain I., Holbrook J., Sneed C., Integrated geophysical and geological methods to delineate buried paleochannels in the New Madrid seismic zone of southeastern Missouri. Proceedings for SAGEEP, Washington D.C, 2000, 253–262 Google Scholar

  • [9] Wisen R., Bjelm L., Dahlin T., Resistivity imaging as a preinvestigation method in urban environments. Proceedings EEGS-ES 6th Meeting, 2000, CH05 Google Scholar

  • [10] Ballard R. F., Cuenod Y., Jenni J. P., Detection of karst cavities by geophysical methods. Bulletin of the International Association of Engineering Geology, 1983, 26–27, 153–157 Google Scholar

  • [11] Sretenovic B., Lokin P., Sretenovic N., Djordjevic M., Kisin S., Some possibilities of electrical scanning method in landslides exploration. Proceedings for the EEGSES 2000 Annual Meeting, Bochum, Germany Google Scholar

  • [12] Yaramanci U., Kiewer M., Geoelectrical characterisation of the Opalinus clay formation in the underground rock laboratory ‘Mont Terri’. Mont Terri Project, Technical Note 99-27, ED-C Experiment. Technische Universitat Berlin, 2000 Google Scholar

  • [13] Baines D., Smith D.G., Froese D.G., Bauman P., Nimeck G., Electrical Resistivity Ground Imaging (ERGI): a new tool for mapping the lithology and geometry of channel-belts and valley-fills. Sedimentology, 2002, 49, 441–449 http://dx.doi.org/10.1046/j.1365-3091.2002.00453.xCrossrefGoogle Scholar

  • [14] Maillet G., Rizzo E., Revil A., Vella C., High resolution electrical resistivity tomography (ERT) in a transition zone environment: application for detailed internal architecture and infilling processes study of a Rhone River paleo-channel. Marine Geophysical Researches, 2005, 26, 317–328 http://dx.doi.org/10.1007/s11001-005-3726-5CrossrefGoogle Scholar

  • [15] Soupios P., Papadopoulos I., Kouli M., Georgaki I., Vallianatos F., Kokkinou E., Investigation of Waste Disposal Areas Using Electrical Methods: A Case Study from Hania, Crete, Greece. Environmental Geology, 2006, 51, 1249–1261, doi: 10.1007/s00254-006-0418-7 http://dx.doi.org/10.1007/s00254-006-0418-7Web of ScienceCrossrefGoogle Scholar

  • [16] Guerra A., Los suelos rojos en Espana. Publicaciones del Departamento de Suelos del Instituto de Edafología y Biología Vegetal, C.S.I.C., Madrid, 1972 Google Scholar

  • [17] Kubiena W. L., The Soils of Europe. Thomas Murby, London, 1953 Google Scholar

  • [18] Bronger A., Ensling J., Gütlich P., Spiering H., Rubification of Terra Rossa in Slovakia: A mösbauer effect study Clays. Clay Minerals., 1983, 31, 269–276 http://dx.doi.org/10.1346/CCMN.1983.0310404CrossrefGoogle Scholar

  • [19] Moresi M., Mongelli, G., The relation between the Terra Rossa and the carbonate-free residue of the underlying limestones and dolostones in Apulia, Italy. Clay Minerals, 1988, 23, 439–436 http://dx.doi.org/10.1180/claymin.1988.023.4.10CrossrefGoogle Scholar

  • [20] Olson C. G., Ruhe R. V., Mausbach M. J., The Terra Rossa limestone contact phenomena in karst, southern Indiana. Soil Sci. Soc. Am. J., 1980, 44, 1075–1079 http://dx.doi.org/10.2136/sssaj1980.03615995004400050040xCrossrefGoogle Scholar

  • [21] Rapp A., Are Terra Rossa soils in Europe eolian deposits from Africa?. Geologiska Foreningens et Stockholm Forhandlingar, 1984, 105, 161–168 http://dx.doi.org/10.1080/11035898309454562CrossrefGoogle Scholar

  • [22] Kalokerinos G., Kokinou E., Sarris A., Vallianatos F., GPP: A Program To Automate The Geophysical Data Processing. AMIREG, Proceedings of the 1st International Conference, Advances in Mineral Resources Management and Environmental Geotechnology, 2004, 703–707 Google Scholar

  • [23] Van Staveren M.T., Knoeff J. G., The geotechnical baseline report as risk allocation tool. Proc. Engineering Geology for Infrastructure Planning in Europe, Berlin, Springer, 2004, 777–785 Google Scholar

About the article

Published Online: 2011-12-14

Published in Print: 2011-12-01

Citation Information: Open Geosciences, Volume 3, Issue 4, Pages 349–357, ISSN (Online) 2391-5447, DOI: https://doi.org/10.2478/s13533-011-0034-2.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in