Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr


IMPACT FACTOR 2017: 0.696
5-year IMPACT FACTOR: 0.736

CiteScore 2017: 0.89

SCImago Journal Rank (SJR) 2017: 0.323
Source Normalized Impact per Paper (SNIP) 2017: 0.674

Open Access
Online
ISSN
2391-5447
See all formats and pricing
More options …

The sinkhole enigma in the Alpine Foreland, Southeast Germany: Evidence of impact-induced rock liquefaction processes

Kord Ernstson / Werner Mayer / Andreas Neumair / Dirk Sudhaus
Published Online: 2011-12-14 | DOI: https://doi.org/10.2478/s13533-011-0038-y

Abstract

Sudden collapse of the Quaternary soil to form sinkholes on the order of meters and tens of meters has been a geologic phenomenon within living memory in a localized area north of Lake Chiemsee in Southeast Germany. Failing a satisfying explanation, a relation with an undefined glaciation process has always been proposed. Excavations and geophysical measurements at three newly affected sites show underground features such as prominent sandy-gravelly intrusions and extrusions typical of rock liquefaction processes well known to occur during strong earthquakes. Since strong earthquakes can reasonably be excluded to have affected the area under discussion, it has been suggested that the observed widespread liquefaction is related with the recently proposed Holocene Chiemgau meteorite impact event. Except for one earlier proposed but unassertive relation between impact and liquefaction, the obviously direct association of both processes in the Chiemgau area emphasizes that observed paleoliquefaction features need not necessarily have originated solely from paleoseismicity but can provide a recognizable regional impact signature.

Keywords: sinkholes (thunderholes); liquefaction; seismicity; meteorite impact; Kienberg-Southern Germany

  • [1] Doppler G., Geological map of Bavaria (1: 25,000), sheet #7941 Trostberg, 1982 Google Scholar

  • [2] Bayerisches Geologisches Landesamt (ed.), Geological map of Bavaria, (1: 500,000), 4th edition, 1997 Google Scholar

  • [3] Stewart D., Knox R., The earthquake that never went away. Gutenberg-Richter Publications, Marble Hill, MO, 1993 Google Scholar

  • [4] Sims J.D., Garvin C.D., Recurrent liquefaction at Soda Lake, California, induced by the 1989 Loma Prieta earthquake, and 1990 and 1991 aftershocks: Implications for paleoseismicity studies. B. Seismol. Soc. Am., 1995, 85, 51–65 Google Scholar

  • [5] Obermeier S.F., The New Madrid Earthquakes: An engineering-geologic interpretation of relict liquefaction features. U.S. GPO, Washington, 1989 Google Scholar

  • [6] Obermeier S.F., Liquefaction evidence for strong earthquakes of Holocene and Latest Pleistocene ages in the states of Indiana and Illinois, USA. Eng. Geol., 1998, 50, 227–254 http://dx.doi.org/10.1016/S0013-7952(98)00032-5CrossrefGoogle Scholar

  • [7] Tuttle M.P., Hengesh J., Tucker K.B., Lettis W., Deaton S.L., Frost J.D., Observations and comparisons of liquefaction features and related effects induced by the Bhuj earthquake. Earthq. Spectra, 2002, 18(Supp. A), 79–100 Google Scholar

  • [8] Youd T.L., Liquefaction mechanisms and induced ground failure. In: Lee W.H.K., Kanamori H., Jennings P.C., Kisslinger C. (Eds.), International Handbook of Earthquake and Engineering Seismology, Part B, Amsterdam, Academic Press, 2003, 1159–1173 http://dx.doi.org/10.1016/S0074-6142(03)80184-5CrossrefGoogle Scholar

  • [9] Rydelek P.A., Tuttle M., Seismology: Explosive craters and soil liquefaction. Nature, 2004, 427, 115–116 http://dx.doi.org/10.1038/427115aCrossrefGoogle Scholar

  • [10] González de Vallejo L.I., Tsigé M., Cabrera L., Paleoliquefaction features on Tenerife (Canary Islands) in Holocene sand deposits. Eng. Geol., 2005, 76, 179–190 http://dx.doi.org/10.1016/j.enggeo.2004.07.006CrossrefGoogle Scholar

  • [11] Wang C.-Y., Wong A., Dreger D.S., Manga, M., Liquefaction limit during earthquakes and underground explosions: implications on groundmotion attenuation. B. Seismol. Soc. Am., 2006, 96,1, 355–363 http://dx.doi.org/10.1785/0120050019CrossrefGoogle Scholar

  • [12] Obermeier S.F., Pond E.C., Olson S.M., Green R.A., 2002, Paleoliquefaction studies in continental settings. In: Ettensohn F.R., Rast N., Brett C:E., Ancient seismites. The Geological Society of America, Boulder, CO, 2002, 13–27 http://dx.doi.org/10.1130/0-8137-2359-0.13CrossrefGoogle Scholar

  • [13] Huuse M., Jackson C.A.-L., Rensbergen P.v., Davies R.J., Flemings P.B., Dixon R.J., Subsurface sediment remobilization and fluid flow in sedimentary basins: an overview. Basin Research, 2010, 22,4, 342–360, URL: http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2117.2010.00488.x/full http://dx.doi.org/10.1111/j.1365-2117.2010.00488.xCrossrefGoogle Scholar

  • [14] Hurst A., Scott A., Vigorito M., Physical characteristics of sand injectites. Earth Sci. Rev., 2011, 106,3–4, 215–246, URL: http://www.sciencedirect. com/science/article/pii/S0012825211000250 http://dx.doi.org/10.1016/j.earscirev.2011.02.004CrossrefGoogle Scholar

  • [15] Ross J.A., Peakall J., Keevil G.M., An integrated model of extrusive sand injectites in cohesionless sediments. Sedimentology, 2011, URL: http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3091.2011.01230.x/abstract. CrossrefGoogle Scholar

  • [16] Alvarez W., Staley E., O’Connor D., Chan M.A., Synsedimentary deformation in the Jurassic of southeastern Utah, a case of impact shaking? Geology, 1998, 26, 579–582 http://dx.doi.org/10.1130/0091-7613(1998)026<0579:SDITJO>2.3.CO;2CrossrefGoogle Scholar

  • [17] Richardson J.E., Melosh H.J., Greenberg R.J., O’Brien D.P., The global effects of impact-induced seismic activity on fractured asteroid surface morphology. Icarus, 2005, 179, 325–349 http://dx.doi.org/10.1016/j.icarus.2005.07.005CrossrefGoogle Scholar

  • [18] Kirsch R. (Ed.), 2006, Groundwater Geophysics: A tool for Hydrogeology. Springer, Berlin, 2006 Google Scholar

  • [19] Wolf L.W., Collier J., Tuttle M., Bodin P., Geophysical reconnaissance of earthquake-induced liqefaction features in the New Madrid seismic zone. J. Appl. Geophys., 1998, 39, 121–129 http://dx.doi.org/10.1016/S0926-9851(98)00016-0CrossrefGoogle Scholar

  • [20] Wolf L.W., Tuttle M.P., Browning S., Park S., Geophysical surveys of earthquake-induced liquefaction deposits in the New Madrid seismic zone. Geophysics, 2006, 71, B223–230 http://dx.doi.org/10.1190/1.2353801CrossrefGoogle Scholar

  • [21] Al-Shukri H., Mahdi H.H., Tuttle M., Threedimensional imaging of earthquake-induced liquefaction features with ground penetrating radar near Marianna, Arkansas. Seismol. Res. Lett., 2006, 77, 505–513 http://dx.doi.org/10.1785/gssrl.77.4.505CrossrefGoogle Scholar

  • [22] Obermeier S.F., Using liquefaction-induced features for paleoseismic analysis. In: McCalpin J.P. (Ed.), Paleoseismology. Academic Press, San Diego, CA, 1996, 331–396 http://dx.doi.org/10.1016/S0074-6142(96)80074-XCrossrefGoogle Scholar

  • [23] Johnston A.C., Schweig E.S., The enigma of the New Madrid Earthquakes of 1811–1812. Annu. Rev. Earth. Pl. Sc., 1996, 24, 339–384 http://dx.doi.org/10.1146/annurev.earth.24.1.339CrossrefGoogle Scholar

  • [24] Tuttle M., Barstow N., Liquefaction-Related Ground Failure: A Case Study in the New Madrid Seismic Zone, Central United States. B. Seismol. Soc. Am., 1996, 86, 636–645 Google Scholar

  • [25] Stewart D., Knox R., 1995, The earthquake America forgot. Gutenberg-Richter Publications, Marble Hill, MO, 1995 Google Scholar

  • [26] Knox R., Stewart D., The New Madrid fault finders guide. Gutenberg-Richter Publications, Marble Hill, MO, 1995 Google Scholar

  • [27] Grünthal G., Mayer-Rosa D., Lenhardt W., Abschätzung der Erdbebengefährdung für die D-A-CHStaaten -Deutschland, Österreich, Schweiz [Estimate of earthquake hazard for the D-A-CH countries — Germany, Austria, Switzerland]. Bautechnik, 1998, 75, 753–767 (in German) CrossrefGoogle Scholar

  • [28] Galli P., New empirical relationhips between magnitude and distance for liquefaction. Tectonophysics, 2000, 324,3, 169–187 http://dx.doi.org/10.1016/S0040-1951(00)00118-9CrossrefGoogle Scholar

  • [29] Higgins C.G., Schoner C., Sinkholes formed by piping into buried channels. Geomorphology, 1997, 20, 307–312 http://dx.doi.org/10.1016/S0169-555X(97)00031-7CrossrefGoogle Scholar

  • [30] Ormö J., Rossi A.P., Komatsu G., The Sirente crater field, Italy, Meteorit. Planet. Sci., 2002, 37, 1507–1523 http://dx.doi.org/10.1111/j.1945-5100.2002.tb00807.xCrossrefGoogle Scholar

  • [31] Stoppa F., The Sirente crater, Italy: Impact versus mud volcano origins, Meteorit. Planet. Sci., 2006, 41, 467–477 http://dx.doi.org/10.1111/j.1945-5100.2006.tb00474.xCrossrefGoogle Scholar

  • [32] Speranza F., Sagnotti L. Rochette P., An anthropogenic origin of the “Sirente crater”, Abruzzi, Italy. Meteorit. Planet. Sci., 2004, 39, 635–649 http://dx.doi.org/10.1111/j.1945-5100.2004.tb00926.xCrossrefGoogle Scholar

  • [33] Ormö J., Koeberl C., Rossi A.P., Komatsu G., Geological and geochemical data from the proposed Sirente crater field: New age dating and evidence for heating of target, Meteorit. Planet. Sci., 2006, 41, 1331–1345 http://dx.doi.org/10.1111/j.1945-5100.2006.tb00525.xCrossrefGoogle Scholar

  • [34] Speranza F., Nicolosi I., Ricchetti N., Etiope G., Rochette P., Sagnotti L., DeRitis R., Chiappini M., The “Sirente crater field,” Italy, revisited. J. Geophys. Res., 2009, 114, B03103, doi:10.1029/2008JB005759 http://dx.doi.org/10.1029/2008JB005759CrossrefGoogle Scholar

  • [35] Schüssler U., Rappenglück M., Ernstson K., Mayer W., Rappenglück, B., Das Impakt-Kraterstreufeld im Chiemgau [The impact crater strewn field in the Chiemgau region]. Eur. J. Mineral. 2005, 17,Beihefte 1, 124 (in German) Google Scholar

  • [36] Ernstson K., Mayer W., Neumair A., Rappenglück B., Rappenglück M.A., Sudhaus D., Zeller K.W., The Chiemgau Crater Strewn Field: Evidence of a Holocene Large Impact Event in Southeast Bavaria, Germany. Journal of Siberian Federal University, Engineering & Technologies, 2010, 3,1, 72–103, URL: http://elib.sfu-kras.ru/bitstream/2311/1631/1/04_.pdf Google Scholar

  • [37] Rappenglück B., Rappenglück M.A., Ernstson K., Mayer W., Neumair A., Sudhaus D., Liritzis I., The fall of Phaethon. A Greco-Roman geomyth preserves the memory of a meteorite impact in Bavaria (south-east Germany). Antiquity, 2010, 84, 428–439, URL: http: //antiquity.ac.uk/ant/084/ant0840428.htm CrossrefGoogle Scholar

  • [38] Liritzis I., Zacharias N., Polymeris G.S., Kitis G., Ernstson K., Sudhaus D., Neumair, A., Mayer W., Rappenglück M.A., Rappenglück B., The Chiemgau meteorite impact and tsunami event (Southeast Germany): First OSL dating. Mediterr. Archaeol. Ar., 2011, 10, 17–33 (in press) Google Scholar

  • [39] Hiltl M., Bauer F., Ernstson K., Mayer W., Neumair A., Rappenglück M.A., SEM and TEM analyses of minerals xifengite, gupeiite, Fe2Si (hapkeite?), titanium carbide (TiC) and cubic moissanite (SiC) from the subsoil in the Alpine Foreland: Are they cosmochemical? 42nd Lunar and Planetary Science Conference, 2011, Abstract 1391.pdf., URL: http://www.lpi.usra.edu/meetings/lpsc2011/pdf/1391.pdf Google Scholar

  • [40] Rappenglück B., Ernstson K., Mayer W., Neumair A., Rappenglück M.A., Sudhaus D., Zeller K.W., The Chiemgau impact: an extraordinary case study for the question of Holocene meteorite impacts and their cultural implications. In: Rubiño-Martín J.A., Belmonte J.A., Prada F., Alberdi A. (Eds.), Cosmology across cultures. Proceedings of a workshop held at Parques de las Ciencias, Granada, Spain, 8–12 September 2008. Astronomical Society of the Pacific, San Francisco, 2009, 338–343, URL: http://www.aspbooks.org/a/volumes/article_details/?paper_id=30130 Google Scholar

  • [41] Yang Z.Q., Verbeeck J., Schryvers D., Tarcea N., Popp J., Rösler W., TEM and Raman characterisation of diamond micro- and nanostructures in carbon spherules from upper soils. Diam. Relat. Mater., 2008, 17, 937–943 http://dx.doi.org/10.1016/j.diamond.2008.01.104CrossrefGoogle Scholar

  • [42] Rösler W., Hoffmann V., Raeymaekers B., Schryvers D., Popp J., Diamonds in carbon spherules — evidence for a cosmic impact? Meteorit. Planet. Sci., 2005, 40,Supplement (Proceedings of 68th Annual Meeting of the Meteoritical Society, held September 12–16, 2005 in Gatlinburg, Tennessee), 5114 Google Scholar

  • [43] Collins G.S., Melosh H.J., Marcus R.A., Earth Impact Effects Program: A Web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteorit. Planet. Sci., 2005, 40,6, 817–840 http://dx.doi.org/10.1111/j.1945-5100.2005.tb00157.xCrossrefGoogle Scholar

  • [44] Rubtsov V., The Tunguska Mystery. Springer, Berlin, 2009 http://dx.doi.org/10.1007/978-0-387-76574-7CrossrefGoogle Scholar

  • [45] Amick D., Maurath G., Gelinas R., Characteristics of seismically induced liquefaction sites and features located in the vicinity of the 1886 Charleston, South Carolina, earthquake. Seismol. Res. Lett., 1990, 61,2, 117–118 Google Scholar

  • [46] Munson P.J., Munson C.A., Pond, E.C., Paleoliquefaction evidence for a strong Holocene earthquake in south-central Indiana. Geology, 1995, 23, 325–328 http://dx.doi.org/10.1130/0091-7613(1995)023<0325:PEFASH>2.3.CO;2CrossrefGoogle Scholar

  • [47] Tuttle M.P., Schweig E.S., Recognizing and dating prehistoric liquefaction features: Lessons learned in the New Madrid seismic zone, central United States. Journal of Geophys. Res., 1996, 101,B3, 6171–6178 http://dx.doi.org/10.1029/95JB02894CrossrefGoogle Scholar

  • [48] Tuttle M.P., The use of liquefaction features in paleoseismology: Lessons learned in the New Madrid seismic zone, central United States. J. Seismol., 2001, 5, 361–380 http://dx.doi.org/10.1023/A:1011423525258CrossrefGoogle Scholar

  • [49] Huntoon P.W., Upheaval Dome, Canyonlands, Utah: Strain indicators that reveal an impact origin. In: Sprinkel D.A., Chidsey Jr. T.C., Anderson P.B. (Eds.), Geology of Utah’s Parks and Monuments. Utah Geological Association, Salt Lake City, 2000, 1–10 Google Scholar

  • [50] Melosh H.J., Impact cratering: A geologic process. Oxford University Press, New York, 1989 Google Scholar

  • [51] Fehr K.T., Pohl J., Hochleitner R., Burghausen meteorite strewn field: Status report, August 2002 (in German) Google Scholar

  • [52] Hoffmann V., Rösler W., Patzelt A., Raeymaekers B., Van Espen P., Characterisation of a small crater-like structure in SE Bavaria, Germany. Meteorit. Planet. Sci., 2005, 40,Supplement (Proceedings of 68th Annual Meeting of the Meteoritical Society, September 12–16, 2005 in Gatlinburg, Tennessee), 5158 Google Scholar

  • [53] Rösler W., Patzelt A., Hoffmann V., Raeymaekers B., Characterisation of a small crater-like structure in SE Bavaria, Germany: Abstract, European Space Agency, First International Conference on Impact Cratering in the Solar System, ESTEC, Noordwijk, The Netherlands, 08–12 May., 2006 Google Scholar

About the article

Published Online: 2011-12-14

Published in Print: 2011-12-01


Citation Information: Open Geosciences, Volume 3, Issue 4, Pages 385–397, ISSN (Online) 2391-5447, DOI: https://doi.org/10.2478/s13533-011-0038-y.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in