Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year


IMPACT FACTOR 2016 (Open Geosciences): 0.475

CiteScore 2016: 0.87

SCImago Journal Rank (SJR) 2016: 0.346
Source Normalized Impact per Paper (SNIP) 2016: 0.690

Open Access
Online
ISSN
2391-5447
See all formats and pricing
More options …

Quartz precipitation and fluid inclusion characteristics in sub-seafloor hydrothermal systems associated with volcanogenic massive sulfide deposits

Matthew Steele-MacInnis / Liang Han / Robert Lowell / J. Rimstidt / Robert Bodnar
Published Online: 2012-05-13 | DOI: https://doi.org/10.2478/s13533-011-0053-z

Abstract

Results of a numerical modeling study of quartz dissolution and precipitation in a sub-seafloor hydrothermal system have been used to predict where in the system quartz could be deposited and potentially trap fluid inclusions. The spatial distribution of zones of quartz dissolution and precipitation is complex, owing to the fact that quartz solubility depends on many inter-related factors, including temperature, fluid salinity and fluid immiscibility, and is further complicated by the fact that quartz exhibits both prograde and retrograde solubility behavior, depending on the fluid temperature and salinity. Using the PVTX properties of H2O-NaCl, the petrographic and microthermometric properties of fluid inclusions trapped at various locations within the hydrothermal system have been predicted. Vapor-rich inclusions are trapped as a result of the retrograde temperature-dependence of quartz solubility as the convecting fluid is heated in the vicinity of the magmatic heat source. Coexisting liquid-rich and vapor-rich inclusions are also trapped in this region when quartz precipitates as a result of fluid immiscibility that lowers the overall bulk quartz solubility in the system. Fluid inclusions trapped in the shallow subsurface near the seafloor vents and in the underlying stockwork are liquid-rich with homogenization temperatures of 200–400°C and salinities close to that of seawater. Volcanogenic massive sulfide (VMS) deposits represent the uplifted and partially eroded remnants of fossil submarine hydrothermal systems, and the relationship between fluid-inclusion properties and location within the hydrothermal system described here can be used in exploration for VMS deposits to infer the direction towards potential massive sulfide ore.

Keywords: seafloor hydrothermal systems; volcanogenic massive sulfide deposits; silica; quartz veins; fluid inclusions

  • [1] Galley A.G., Hannington M., Jonasson I., Volcanogenic massive sulphide deposits. In: W.D. Goodfellow (Ed.), Mineral Deposits of Canada: A Synthesis of Major Deposit-types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Geological Association of Canada, St. John’s NL, 2007, 141–161 Google Scholar

  • [2] Vanko D.A., Bach W., Roberts S., Yeats C.J., Scott S.D., Fluid inclusion evidence for subsurface phase separation and variable fluid mixing regimes beneath the deep-sea PACMANUS hydrothermal field, Manus Basin back arc rift, Papua New Guinea. J. Geophys. Res., 2004, 109, B03201 http://dx.doi.org/10.1029/2003JB002579CrossrefGoogle Scholar

  • [3] Lüders V., Pracejus B., Halbach P., Fluid inclusion and sulfur isotope studies in probable modern analogue Kuroko-type ores from the JADE hydrothermal field (central Okinawa Trough, Japan). Chem. Geol., 2001, 173, 45–58 http://dx.doi.org/10.1016/S0009-2541(00)00267-9CrossrefGoogle Scholar

  • [4] Hannington, M.D., Galley, A.G., Herzig, P.M., Petersen, S., Comparison of the TAG mound and stock-work complex with Cyprus-type massive sulfide deposits. In: P.M. Herzig, S.E. Humphris, D.J. Miller, and R.A. Zierenberg (Eds.), Proceedings of the ocean drilling program, scientific results volume 158. Integrated Ocean Drilling Program, College Station TX USA, 1998, 389–415 Google Scholar

  • [5] Pisutha-Arnond V., Ohmoto H., Thermal history, and chemical and isotopic compositions of the ore-forming fluids responsible for the Kuroko massive sulfide deposits in the Hokuroku District of Japan. Econ. Geol. Mono., 1983, 5, 523–558 Google Scholar

  • [6] Vanko D.A., Temperature, pressure, and composition of hydrothermal fluids, with their bearing on the magnitude of tectonic uplift at mid-ocean ridges, inferred from fluid inclusions in oceanic layer 3 rocks. J. Geophys. Res., 1988, 93, 4595–4611 http://dx.doi.org/10.1029/JB093iB05p04595CrossrefGoogle Scholar

  • [7] Halbach, M., Halbach, P., Lüders, V., Sulfide-impregnated and pure silica precipitates of hydrothermal origin from the Central Indian Ocean. Chem. Geol., 2002, 182, 357–375 http://dx.doi.org/10.1016/S0009-2541(01)00323-0CrossrefGoogle Scholar

  • [8] de Ronde C.E.J., Fluid chemistry and isotopic characteristics of seafloor hydrothermal system and associated VMS deposits; potential for magmatic contributions. In: J.F.H. Thompson (Ed.) Magmas, Fluids and Ore Deposits. Mineralogical Association of Canada, Ottawa ON Canada, 1995, 479–509 Google Scholar

  • [9] Roedder E., Fluid Inclusions. Reviews in Mineralogy, 1984, 12, 644 Google Scholar

  • [10] Von Damm K.L., Evolution of the hydrothermal system at East Pacific Rise 9°50′N; geochemical evidence for changes in the upper oceanic crust. Geophys. Mono., 2004, 148, 285–304 http://dx.doi.org/10.1029/148GM12CrossrefGoogle Scholar

  • [11] Nehlig, P., Salinity of oceanic hydrothermal fluids: a fluid inclusion study. Earth Planet. Sci. Lett., 1991, 102, 310–325 http://dx.doi.org/10.1016/0012-821X(91)90026-ECrossrefGoogle Scholar

  • [12] Driesner, T., Heinrich, C.A., The system H2O-NaCl. Part I: Correlation formulae for phase relations in temperature-pressure-composition space from 0 to 1000°C, 0 to 5000 bar, and 0 to 1 XNaCl. Geochim. Cosmochim. Acta, 2207, 71, 4880–4901 http://dx.doi.org/10.1016/j.gca.2006.01.033Google Scholar

  • [13] Akinfiev N.N., Diamond L.W., A simple predictive model of quartz solubility in water-salt-CO2 systems at temperatures up to 1000°C and pressures up to 1000 MPa. Geochim. Cosmochim. Acta, 2009, 76, 1597–1608 http://dx.doi.org/10.1016/j.gca.2008.12.011CrossrefWeb of ScienceGoogle Scholar

  • [14] Knight, C.L., Bodnar, R.J., Synthetic fluid inclusions. IX. Critical PVTX properties of NaCl-H2O solutions. Geochim. Cosmochim. Acta, 1989, 53, 3–8 http://dx.doi.org/10.1016/0016-7037(89)90267-6CrossrefGoogle Scholar

  • [15] Roedder E., Metastable superheated ice in liquid-water inclusions under high negative pressure. Science, 1967, 155, 1413–1417 http://dx.doi.org/10.1126/science.155.3768.1413CrossrefGoogle Scholar

  • [16] Bodnar, R.J., Sterner, S.M., Synthetic fluid inclusions. In: G.C. Ulmer and H.L. Barnes (Eds.) Hydrothermal experimental techniques. Wiley-Interscience, New York NY USA, 1987, 423–457 Google Scholar

  • [17] Kennedy, G.C., A portion of the system silica-water. Econ. Geol., 1950, 45, 629–653 http://dx.doi.org/10.2113/gsecongeo.45.7.629CrossrefGoogle Scholar

  • [18] Dolejš, D., Manning, C.E. Thermodynamic model for mineral solubility in aqueous fluids: theory, calibration and application to model fluid-flow systems. Geofluids, 2010, 10, 20–40 Web of ScienceGoogle Scholar

  • [19] Cline J.S., Bodnar R.J., Rimstidt J.D., Numerical simulation of fluid flow and silica transport and deposition in boiling hydrothermal solutions; application to epithermal gold deposits. J. Geophys. Res., 1992, 97, 9085–9103 http://dx.doi.org/10.1029/91JB03129CrossrefGoogle Scholar

  • [20] Lewis K.C., Lowell R.P., Numerical modeling of two-phase flow in the NaCl-H2O system: Introduction of a numerical method and benchmarking. J. Geophys. Res., 2009, 114, B05202 http://dx.doi.org/10.1029/2008JB006029CrossrefGoogle Scholar

  • [21] Han L., Lowell R.P., Lewis K.C., The dynamics of twophase hydrothermal systems at a seafloor pressure of 25 MPa: Application to EPR 9°50′ N. J. Geophys. Res. (submitted for publication) Google Scholar

  • [22] Han, L., Exploring two-phase hydrothermal circulation at a seafloor pressure of 25 MPa: Application for EPR 9°50′ N. MSc Thesis, Virginia Tech, Blacksburg VA USA, 2011 Google Scholar

  • [23] Steele-MacInnis M., Han L., Lowell R.P., Rimstidt J.D., Bodnar R.J., The role of fluid phase immiscibility in quartz dissolution and precipitation in sub-seafloor hydrothermal systems. Earth Planet. Sci. Lett., 2012, 321–322, 139–151 http://dx.doi.org/10.1016/j.epsl.2011.12.037CrossrefWeb of ScienceGoogle Scholar

  • [24] Mottl, M.J., Holland, H.D., Chemical exchange during hydrothermal alteration of basalt by seawater. I: Experimental results for major and minor components of seawater. Geochim. Cosmochim. Acta,1978, 42, 1103–1115 http://dx.doi.org/10.1016/0016-7037(78)90107-2CrossrefGoogle Scholar

  • [25] Seyfried, W.E., Bischoff, J.L., Experimental seawaterbasalt interaction at 300°C, 500 bars, chemical exchange, secondary mineral formation and implications for the transport of heavy metals. Geochim. Cosmochim. Acta, 1981, 45, 135–147 http://dx.doi.org/10.1016/0016-7037(81)90157-5CrossrefGoogle Scholar

  • [26] Anderko, A., Pitzer, K.S., Equation-of-state representation of phase equilibria and volumetric properties of the system NaCl-H2O above 573 K. Geochim. Cosmochim. Acta, 1993, 57, 1657–1680 http://dx.doi.org/10.1016/0016-7037(93)90105-6CrossrefGoogle Scholar

  • [27] Sterner S.M., Hall D.L., Bodnar R.J., Synthetic fluid inclusions. V. Solubility relations in the system NaCl-KCl-H2O under vapor-saturated conditions. Geochim. et Cosmochim. Acta, 1988, 52, 989–1006 http://dx.doi.org/10.1016/0016-7037(88)90254-2CrossrefGoogle Scholar

  • [28] Bodnar R.J., Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim. Cosmochim. Acta, 1993, 57, 683–684 http://dx.doi.org/10.1016/0016-7037(93)90378-ACrossrefGoogle Scholar

  • [29] Atkinson Jr., A.B., A model for the PTX properties of H2O-NaCl, MSc Thesis, Virginia Tech, Blacksburg VA USA, 2002 Google Scholar

  • [30] Bodnar, R.J., Vityk, M.O., Interpretation of microthermometric data for H2O-NaCl fluid inclusions. In: B. De Vivo and M.L. Frezotti (Eds.) Fluid inclusions in minerals, methods and applications. Virginia Tech, Blacksburg VA USA, 1994, 117–130 Google Scholar

  • [31] Bodnar R.J., A method of calculating fluid inclusion volumes based on vapor bubble diameters and P-VT-X properties of inclusion fluids. Econ. Geol., 1983, 78, 538–542 http://dx.doi.org/10.2113/gsecongeo.78.3.535CrossrefGoogle Scholar

  • [32] Roedder, E., Bodnar, R.J., Geologic pressure determinations from fluid inclusion studies. Ann. Rev. Earth Planet. Sci., 1980, 8, 263–301 http://dx.doi.org/10.1146/annurev.ea.08.050180.001403CrossrefGoogle Scholar

  • [33] Bodnar, R.J., Reynolds, T.J., Kuehn, C.A., Fluid inclusion systematics in epithermal systems. In: B.R. Berger and P.M. Bethke (Eds.) Reviews in Economic Geology, Geology and Geochemistry of Epithermal Systems. Society of Economic Geologists, Littleton CO USA, 1985, 73–98 Google Scholar

  • [34] Bodnar, R.J., Introduction to aqueous-electrolyte fluid inclusions. In: I. Samson, A. Anderson and D. Marshall (Eds.) Fluid inclusions, analysis and interpretation. Mineralogical Association of Canada, Ottawa ON Canada, 2003, 81–100 Google Scholar

  • [35] Kesler, S.E., Ore-forming fluids. Elements, 2005, 1, 13–18 http://dx.doi.org/10.2113/gselements.1.1.13CrossrefGoogle Scholar

  • [36] Bodnar, R.J., Burnham, C.W., Sterner, S.M., Synthetic fluid inclusions in natural quartz. III. Determination of phase equilibrium properties in the system H2ONaCl to 1000°C and 1500 bars. Geochim. Cosmochim. Acta, 1985, 49, 1861–1873 http://dx.doi.org/10.1016/0016-7037(85)90081-XCrossrefGoogle Scholar

  • [37] Bischoff, J.L., Rosenbauer R.J., Salinity variations in submarine hydrothermal systems by layered double-diffusive convection. J. Geol., 1989, 97, 613–623 http://dx.doi.org/10.1086/629338CrossrefGoogle Scholar

  • [38] Moncada, D., Mutchler, S., Nieto, A., Reynolds, T.J., Rimstidt, J.D., Bodnar, R.J., Mineral textures and fluid inclusion petrography of the epithermal Ag-Au deposits at Guanajuato, Mexico: Application to exploration. J. Geochem. Explor. (in press) DOI:10.1016/j.gexplo.2011.12.001 CrossrefWeb of ScienceGoogle Scholar

  • [39] Bodnar, R.J., Fluid inclusion evidence for a magmatic source for metals in porphyry copper deposits. In: J.F.H. Thompson (Ed.) Magmas, fluids and ore deposits. Mineralogical Association of Canada, Ottawa ON Canada, 1995, 139–152 Google Scholar

  • [40] Roedder, E., Bodnar, R.J., Fluid Inclusion Studies of Hydrothermal Ore Deposits. In: H.L. Barnes (Ed.) Geochemistry of hydrothermal ore deposits (3rd ed.). Wiley & Sons, Inc., New York NY USA, 1997, 657–698 Google Scholar

About the article

Published Online: 2012-05-13

Published in Print: 2012-06-01


Citation Information: Open Geosciences, Volume 4, Issue 2, Pages 275–286, ISSN (Online) 2391-5447, DOI: https://doi.org/10.2478/s13533-011-0053-z.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
K. C. Lewis, Samuel Coakley, and Sean Miele
Transport in Porous Media, 2017, Volume 117, Number 3, Page 415
[2]
Xiqiang Zhou, Daizhao Chen, Hairuo Qing, Yixiong Qian, and Dan Wang
International Geology Review, 2014, Volume 56, Number 15, Page 1906

Comments (0)

Please log in or register to comment.
Log in