Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year


IMPACT FACTOR 2016 (Open Geosciences): 0.475

CiteScore 2016: 0.87

SCImago Journal Rank (SJR) 2016: 0.346
Source Normalized Impact per Paper (SNIP) 2016: 0.690

Open Access
Online
ISSN
2391-5447
See all formats and pricing
More options …

Application of the Linkam TS1400XY heating stage to melt inclusion studies

Rosario Esposito / Rita Klebesz
  • Department of Geosciences, Virginia Polytechnic Institute & State University, Blacksburg, VA, 24061, USA
  • Dipartimento di Scienze della Terra, Università di Napoli Federico II, Naples, 80138, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Omar Bartoli / Yury Klyukin / Daniel Moncada / Angela Doherty
  • Department of Geosciences, Virginia Polytechnic Institute & State University, Blacksburg, VA, 24061, USA
  • Dipartimento di Scienze della Terra, Università di Napoli Federico II, Naples, 80138, Italy
  • Dipartimento degli Alimenti e dell’Ambiente, Università degli Studi di Messina, Messina, 98166, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Robert Bodnar
Published Online: 2012-05-13 | DOI: https://doi.org/10.2478/s13533-011-0054-y

Abstract

Melt inclusions (MI) trapped in igneous phenocrysts provide one of the best tools available for characterizing magmatic processes. Some MI experience post-entrapment modifications, including crystallization of material on the walls, formation of a vapor bubble containing volatiles originally dissolved in the melt, or partial to complete crystallization of the melt. In these cases, laboratory heating may be necessary to return the MI to its original homogeneous melt state, followed by rapid quenching of the melt to produce a homogeneous glass phase, before microanalyses can be undertaken.

Here we describe a series of heating experiments that have been performed on crystallized MI hosted in olivine, clinopyroxene and quartz phenocrysts, using the Linkam TS1400XY microscope heating stage. During the experiments, we have recorded the melting behaviors of the MI up to a maximum temperature of 1360°C. In most of the experiments, the MI were homogenized completely (without crystals or bubbles) and remained homogeneous during quenching to room temperature. The resulting single phase MI contained a homogeneous glass phase. These tests demonstrate the applicability of the Linkam TS1400XY microscope heating stage to homogenize and quench MI to produce homogeneous glasses that can be analyzed with various techniques such as Electron Microprobe (EMP), Secondary Ion Mass Spectrometry (SIMS), Laser ablation Inductively Coupled Plasma Mass Spectrometry (LA ICP-MS), Raman spectroscopy, FTIR spectroscopy, etc.

During heating experiments, the optical quality varied greatly between samples and was a function of not only the temperature of observation, but also on the amount of matrix glass attached to the phenocryst, the presence of other MI in the sample which are connected to the outside of the crystal, and the existence of mineral inclusions in the host.

Keywords: microscope heating stage; melt inclusion; microthermometry; volatiles

  • [1] Métrich N., Wallace P.J., Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions. In: Putirka K.D. and Tepley F.J., Minerals, Inclusions and Volcanic Processes. Rev. Mineral. Geochem., 2008, 69, 363–402 Web of ScienceGoogle Scholar

  • [2] Sobolev A.V., Hofmann A.W., Jochum K.P., Kuzmin D.V., Stoll B., A young source for the Hawaiian plume. Nature, 2011, 476, 434–437 http://dx.doi.org/10.1038/nature10321Web of ScienceCrossrefGoogle Scholar

  • [3] De Vivo B., and Bodnar, R.J., Melt inclusions in volcanic systems. Elsevier Science, the Netherlands, 2003 Google Scholar

  • [4] Helo C., Longpre M.A., Shimizu N., Clague D.A., Stix J., Explosive eruptions at mid-ocean ridges driven by CO2-rich magmas. Nat. Geosci., 2011, 4, 260–263 http://dx.doi.org/10.1038/ngeo1104CrossrefWeb of ScienceGoogle Scholar

  • [5] Danyushevsky L.V., McNeill A.W., Sobolev A.V., Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chem. Geol., 2002, 183, 5–24 http://dx.doi.org/10.1016/S0009-2541(01)00369-2CrossrefGoogle Scholar

  • [6] Lowenstern J.B., Applications of silicate-melt inclusions to the study of magmatic volatiles. In: Thompson J.F.H. (Ed.), Magmas, Fluids and Ore Deposits. Mineralogical Association of Canada, Short Course, Canada, 1995, 23, 71–99 Google Scholar

  • [7] Roedder E., Origin and significance of magmatic inclusions. B. Mineral., 1979, 102, 487–510 Google Scholar

  • [8] Sobolev A.V., Kostyuk V.P., Magmatic crystallization based on study of melt inclusions. In: Roedder E. (Ed.), Fluid Inclusion Research, Proceedings of COFFI, The University of Michigan Press, 1976, 9, 182–253 Google Scholar

  • [9] Fedele L., Bodnar R.J., DeVivo B., Tracy R., Melt inclusion geochemistry and computer modeling of trachyte petrogenesis at Ponza, Italy. Chem. Geol., 2003, 194, 81–104 http://dx.doi.org/10.1016/S0009-2541(02)00272-3CrossrefGoogle Scholar

  • [10] Nielsen R.L., Crum J., Bourgeois R., Hascall K., Forsythe L.M., Fisk M.R., Christie D.M., Melt inclusions in high-An plagioclase from the Gorda Ridge: an example of the local diversity of MORB parent magmas. Contrib. Mineral. Petr., 1995, 122, 34–50 http://dx.doi.org/10.1007/s004100050111CrossrefGoogle Scholar

  • [11] Sinton C.W., Christie D.M., Coombs V.L., Nielsen R.L., Fisk M.R., Near-primary melt inclusions in anorthite phenocrysts from the Galapagos Platfrom. Earth Planet. Sc. Lett., 1993, 119, 527–537 http://dx.doi.org/10.1016/0012-821X(93)90060-MCrossrefGoogle Scholar

  • [12] Student J.J., Bodnar R.J., Synthetic Fluid Inclusions XIV: Coexisting Silicate Melt and Aqueous Fluid Inclusions in the Haplogranite-H2O-NaCl-KCl System. J. Petrol., 1999, 40, 1509–1525 http://dx.doi.org/10.1093/petroj/40.10.1509CrossrefGoogle Scholar

  • [13] Anderson A.T., Davis A.M., Lu F., Evolution of Bishop Tuff Rhyolitic Magma Based on Melt and Magnetite Inclusions and Zoned Phenocrysts. J. Petrol., 2000, 41, 449–473 http://dx.doi.org/10.1093/petrology/41.3.449CrossrefGoogle Scholar

  • [14] Skirius C.M., Peterson J.W., Anderson A.T., Homogenizing Rhyolitic Glass Inclusions from the Bishop Tuff. Am. Mineral., 1990, 75, 1381–1398 Google Scholar

  • [15] Student J.J., Bodnar R.J., Silicate melt inclusions in porphyry copper deposits: Identification and homogenization behavior. Can. Mineral., 2004, 42, 1583–1599 http://dx.doi.org/10.2113/gscanmin.42.5.1583CrossrefGoogle Scholar

  • [16] Thomas J.B., Bodnar R.J., Shimizu N., Chesner C.A., Melt Inclusions in Zircon. Rev. Mineral. Geochem., 2003, 53, 63–87 http://dx.doi.org/10.2113/0530063CrossrefGoogle Scholar

  • [17] Bartoli O., Cesare B., Poli S., Bodnar R.J.., Frezzotti M.L., Acosta-Vigil A, Meli S., Melting in the deep crust: message from melt inclusions in peritectic garnet from migmatites. Mineral. Mag., 2011, 75, 495 Google Scholar

  • [18] Cesare B., Acosta-Vigil A., Ferrero S., Bartoli O., Melt inclusions in migmatites and granulites. J. Virt. Expl., 2011, 40, n. 2, doi: 10.3809/jvirtex.2011.00268 Web of ScienceGoogle Scholar

  • [19] Ferrero S., Bartoli O., Cesare B., Salvioli-Mariani E., Acosta-Vigil A., Cavallo A., Groppo C., Battiston S., Microstructures of melt inclusions in anatectic metasedimentary rocks. J. Metamorph. Geol., 2012, doi: 10.1111/j.1525-1314.2011.00968.x Web of ScienceCrossrefGoogle Scholar

  • [20] Clocchiatti R., Les inclusions vitreuses des cristaux de quartz; Etude optique, thermo-optique et chimique; Applications geologiques. Vitreous inclusions in quartz crystals; optical, thermo-optical and chemical studies; geologic applications. Mem. S. Geo. F., no, 1975, 122 Google Scholar

  • [21] Frezzotti M.L., Magmatic immiscibility and fluid phase evolution in the Mount Genis granite (southeastern Sardinia, Italy). Geochim. Cosmochim. Ac., 1992, 56, 21–33 http://dx.doi.org/10.1016/0016-7037(92)90114-XCrossrefGoogle Scholar

  • [22] Lowenstern J.B., Dissolved Volatile Concentrations in an Ore-Forming Magma. Geology, 1994, 22, 893–896 http://dx.doi.org/10.1130/0091-7613(1994)022<0893:DVCIAO>2.3.CO;2CrossrefGoogle Scholar

  • [23] Reyf F.G., Direct evolution of W-rich brines from crystallizing melt within the Mariktikan granite pluton, west Transbaikalia. Miner. Deposita, 1997, 32, 475–490 http://dx.doi.org/10.1007/s001260050116CrossrefGoogle Scholar

  • [24] Bodnar R.J., Student J.J., Melt inclusions in plutonic rocks: Petrography and microthermometry. In: Webster J.D. (Ed.), Melt Inclusions in Plutonic Rocks, Mineralogical Association of Canada, Short Course, Montreal, Quebec, 2006, 36, 1–25 Google Scholar

  • [25] Schiano P., Primitive mantle magmas recorded as silicate melt inclusions in igneous minerals. Earth-Sci. Rev., 2003, 63, 121–144 http://dx.doi.org/10.1016/S0012-8252(03)00034-5CrossrefGoogle Scholar

  • [26] Sobolev A.V., Dmitriev L.V., Barsukov V.L., Nevsorov V.N., Slutsky A.B., The formation conditions of the high magnesium olivines from the monomineralic fraction of Luna 24 regolith. Proceedings of the 11th Lunar and Planetary Science Conference, 1980, 105–116 Google Scholar

  • [27] Beddoe-Stephens B., Aspden J.A., Shepherd T.J., Glass inclusions and melt compositions of the Toba Tuffs, northern Sumatra. Contrib. Mineral. Petr., 1983, 83, 278–287 http://dx.doi.org/10.1007/BF00371196CrossrefGoogle Scholar

  • [28] Newman S., Chesner C., Volatile compositions of glass inclusions from the 75Ka Toba Tuff, Sumatra. Paper presented at the 1989 annual meeting of the Geological Society of America, St. Louis, MO, US, November 6–9, 1989 Google Scholar

  • [29] Chesner C.A., Petrogenesis of the Toba Tuffs, Sumatra, Indonesia. J. Petrol., 1998, 39, 397–438 http://dx.doi.org/10.1093/petroj/39.3.397CrossrefGoogle Scholar

  • [30] Esposito R., Bodnar R.J., Danyushevsky L., De Vivo B., Fedele L., Hunter J., Lima A., Shimizu N., Volatile Evolution of Magma Associated with the Solchiaro Eruption in the Phlegrean Volcanic District (Italy). J. Petrol., 2011, 52, 2431–2460 http://dx.doi.org/10.1093/petrology/egr051Web of ScienceCrossrefGoogle Scholar

  • [31] Bertagnini A., Landi P., Rosi M., Vigliargio A., The Pomici di Base plinian eruption of Somma-Vesuvius. J. Volcanol. Geoth. Res., 1998, 83, 219–239 http://dx.doi.org/10.1016/S0377-0273(98)00025-0CrossrefGoogle Scholar

  • [32] Landi P., Bertagnini A., Rosi M., Chemical zoning and crystallization mechanisms in the magma chamber of the Pomici di Base plinian eruption of Somma-Vesuvius (Italy). Contrib. Mineral. Petr., 1999, 135, 179–197 http://dx.doi.org/10.1007/s004100050505CrossrefGoogle Scholar

  • [33] Thomas J.B., Bodnar R.J., A technique for mounting and polishing melt inclusions in small (>1 mm) crystals. Am. Mineral., 2002, 87, 1505–1508 Google Scholar

  • [34] Sobolev A.V., Danyushevsky L.V., Dmitriev L.V., Sushchevskaya N.M., High-Alumina Magnesium Tholeiite as One of Primary Melts of Basalts of the Mid-Oceanic Ridges. Geokhimiya+, 1988, 1522–1528 Google Scholar

  • [35] Severs M.J., Azbej T., Thomas J.B., Mandeville C.W., Jr., Bodnar R.J., Experimental determination of H2O loss from melt inclusions during laboratory heating. Chem. Geol., 2007, 237(3–4), 358–371 http://dx.doi.org/10.1016/j.chemgeo.2006.07.008CrossrefWeb of ScienceGoogle Scholar

  • [36] Anderson A.T., Jr., Hourglass inclusions; theory and application to the Bishop rhyolitic tuff. Am. Mineral., 1991, 76, 530–547 Google Scholar

About the article

Published Online: 2012-05-13

Published in Print: 2012-06-01


Citation Information: Open Geosciences, Volume 4, Issue 2, Pages 208–218, ISSN (Online) 2391-5447, DOI: https://doi.org/10.2478/s13533-011-0054-y.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Jiankang LI and Shenghu LI
Acta Geologica Sinica - English Edition, 2014, Volume 88, Number 3, Page 854
[2]
Omar Bartoli, Bernardo Cesare, Laurent Remusat, Antonio Acosta-Vigil, and Stefano Poli
Earth and Planetary Science Letters, 2014, Volume 395, Page 281
[3]
Matthew Steele-MacInnis and Robert J. Bodnar
Geochimica et Cosmochimica Acta, 2013, Volume 115, Page 205
[4]
O. Bartoli, B. Cesare, S. Poli, A. Acosta-Vigil, R. Esposito, A. Turina, R. J. Bodnar, R. J. Angel, and J. Hunter
Geofluids, 2013, Volume 13, Number 4, Page 405

Comments (0)

Please log in or register to comment.
Log in