Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year


IMPACT FACTOR 2016 (Open Geosciences): 0.475

CiteScore 2016: 0.87

SCImago Journal Rank (SJR) 2016: 0.346
Source Normalized Impact per Paper (SNIP) 2016: 0.690

Open Access
Online
ISSN
2391-5447
See all formats and pricing
More options …

Gangue mineral textures and fluid inclusion characteristics of the Santa Margarita Vein in the Guanajuato Mining District, Mexico

Daniel Moncada / Robert Bodnar
Published Online: 2012-05-13 | DOI: https://doi.org/10.2478/s13533-011-0057-8

Abstract

Successful exploration for mineral deposits requires tools that the explorationist can use to distinguish between targets with high potential for mineralization and those with lower economic potential. In this study, we describe a technique based on gangue mineral textures and fluid inclusion characteristics that has been applied to identify an area of high potential for gold-silver mineralization in the epithermal Ag-Au deposits at Guanajuato, Mexico. The Guanajuato mining district in Mexico is one of the largest silver producing districts in the world with continuous mining activity for nearly 500 years. Previous work conducted on the Veta Madre vein system that is located in the central part of this district identified favorable areas for further exploration in the deepest levels that have been developed and explored. The resulting exploration program discovered one of the richest gold-silver veins ever found in the district. This newly discovered vein that runs parallel to the Veta Madre was named the Santa Margarita vein. Selected mineralized samples from this vein contain up to 249 g/t of Au and up to 2,280 g/t Ag. Fluid inclusions in these samples show homogenization temperatures that range from 184 to 300°C and salinities ranging from 0 to 5 wt.% NaCl. Barren samples show the same range in homogenization temperature, but salinities range only up to 3 wt.% NaCl. Evidence of boiling was observed in most of the samples based on fluid inclusions and/or quartz and calcite textures. Liquid-rich inclusions with trapped illite are closely associated with high silver grades. The presence of assemblages of vapor-rich-only fluid inclusions, indicative of intense boiling or “flashing”, shows the best correlation with high gold grades.

Keywords: Guanajuato Mining District; Veta Madre; fluid inclusions; boiling; flashing; mineral exploration; epithermal precious metals deposits

  • [1] Moncada D., Mutchler S., Nieto A., Reynolds T.J., Rimstidt J.D., Bodnar R.J., Mineral Textures and Fluid Inclusion Petrography of the Epithermal Ag-Au Deposits at Guanajuato, Mexico. Application to Exploration, 2012, Journal of Geochemical Exploration (in press), DOI:10.1016/j.gexplo.2011.12.001 CrossrefGoogle Scholar

  • [2] Buchanan L.J., The Las Torres Mine, Guanajuato, Mexico; Ore controls of a fossil geothermal system, Colorado School of Mines, Golden, Colorado, 1979, PhD Thesis Google Scholar

  • [3] Great Panther Silver, Great Panther Discovers And Develops 3 New Zones At Guanajuato. News Releases, 2009 http://www.greatpanther.com/s/NewsReleases.asp?ReportID=411437&_Type=News-Releases&_-Title=Great-Panther-Discovers-And-Develops-3-New-Zones-At-Guanajuato Google Scholar

  • [4] Albinson T., Norman D.I., Cole D., Chomiak B., Controls on formation of low-sulfidation epithermal deposits in Mexico; constraints from fluid inclusion and stable isotope data. Special Publication Society of Economic Geologists U. S., 2001, 8, 1–32 Google Scholar

  • [5] Hedenquist J.W., Arribas R A., Gonzalez-Urien E., Exploration for epithermal gold deposits. Reviews in Economic Geology, 2000, 13, 245–277 Google Scholar

  • [6] Roedder E., Fluid inclusions. Rev. Mineral., 1984, 12, 644 Google Scholar

  • [7] Simmons S.F., White N.C., John D.A., Geological Characteristics of Epithermal Precious and Base Metal Deposits. Economic Geology 100th Anniversary Volume, 2005, Economic Geology; One Hundredth Anniversary Volume, 1905–2005, 485–522 Google Scholar

  • [8] Buchanan L.J., Ore controls of vertically stacked deposits, Guanajuato, Mexico. American Institute of Mining Engineers, 1980, Preprint 26, 80–82 Google Scholar

  • [9] Kamilli R.J., Ohmoto H., Paragenesis, zoning, fluid inclusion, and isotopic studies of the Finlandia Vein, Colqui District, Central Peru. Econ. Geol., 1977, 72, 950–982 http://dx.doi.org/10.2113/gsecongeo.72.6.950CrossrefGoogle Scholar

  • [10] Brown K.L., Gold deposition from geothermal discharges in New Zealand. Econ. Geol., 1986, 81, 979–983 http://dx.doi.org/10.2113/gsecongeo.81.4.979CrossrefGoogle Scholar

  • [11] Clark J.R., Williams-Jones A.E., Analogues of epithermal gold-silver deposition in geothermal well scales. Nature, 1990, 346, 644–645 http://dx.doi.org/10.1038/346644a0CrossrefGoogle Scholar

  • [12] Etoh J., Izawa E., Watanabe K., Taguchi S., Sekine R., Bladed Quartz and Its Relationship to Gold Mineralization in the Hishikari Low-Sulfidation Epithermal Gold Deposit, Japan. Econ. Geol., 2002, 97, 1841–1851 Google Scholar

  • [13] Weissberg B.G., Gold-silver ore-grade precipitates from New Zealand thermal waters. Econ. Geol., 1969, 64, 95–108 http://dx.doi.org/10.2113/gsecongeo.64.1.95CrossrefGoogle Scholar

  • [14] Seward T.M., The hydrothermal chemistry of gold and its implications for ore formation; boiling and conductive cooling as examples. Economic Geology Monograph, 1989, 6, 398–404 Google Scholar

  • [15] Helgeson H.C., Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am. J. Sci., 1969, 267, 729–804 http://dx.doi.org/10.2475/ajs.267.7.729CrossrefGoogle Scholar

  • [16] Shenberger D.M., Barnes H.L., Solubility of gold in aqueous sulfide solutions from 150 to 350°C. Geochim. Cosmochim. Ac., 1989, 53, 269–278 http://dx.doi.org/10.1016/0016-7037(89)90379-7CrossrefGoogle Scholar

  • [17] Stefànsson A., Seward T.M., Gold(I) complexing in aqueous sulphide solutions to 500°C at 500 bar. Geochim. Cosmochim. Ac., 2004, 68, 4121–4143 http://dx.doi.org/10.1016/j.gca.2004.04.006Google Scholar

  • [18] Stefànsson A., Seward T.M., Experimental determination of the stability and stoichiometry of sulphide complexes of silver(I) in hydrothermal solutions to 400°C. Geochim. Cosmochim. Ac., 2003, 67, 1395–1413 http://dx.doi.org/10.1016/S0016-7037(02)01093-1CrossrefGoogle Scholar

  • [19] Sillitoe R.H., Hedenquist J.W., Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits. Special Publication Society of Economic Geologists U. S., 2003, 10, 315–343 Google Scholar

  • [20] Gunnarsson I., Arnórsson S., Amorphous silica solubility and the thermodynamic properties of H4SiO°4 in the range of 0° to 350°C at Psat. Geochim. Cosmochim. Ac., 2000, 64, 2295–2307 http://dx.doi.org/10.1016/S0016-7037(99)00426-3CrossrefGoogle Scholar

  • [21] Brown K.L., Kinetics of gold precipitation from experimental hydrothermal sulfide solutions. Economic Geology Monograph, 1989, 6, 320–327 Google Scholar

  • [22] Simmons S.F., Brown K.L., Gold in magmatic hydrothermal solutions and the rapid formation of a giant ore deposit. Science, 2006, 314, 288–291 http://dx.doi.org/10.1126/science.1132866CrossrefGoogle Scholar

  • [23] Simmons S.F., Brown K.L., The flux of gold and related metals through a volcanic arc, Taupo Volcanic Zone, New Zealand. Geology, 2007, 35, 1099–1102 http://dx.doi.org/10.1130/G24022A.1CrossrefGoogle Scholar

  • [24] Prol-Ledesma R.M., Juarez-Sanchez F., Lozano-Santa Cruz R., Alaca-Montiel E., Cruz-Casas V.A., Hernandez-Lombardini S., Canals A., Cardellach E., Precious and base metal deposition in an active hydrothermal system, La Primavera, Mexico. Proceedings — International Symposium on Water-Rock Interaction, 1998, 9, 649–652 Google Scholar

  • [25] Bodnar R.J., Reynolds T.J., Kuehn C.A., Fluidinclusion systematics in epithermal systems. Reviews in Economic Geology, 1985, 2, 73–97 Google Scholar

  • [26] Dong G., Morrison G., Jaireth S., Quartz textures in epithermal veins, Queensland; classification, origin and implication. Econ. Geol., 1995, 90, 1841–1856 http://dx.doi.org/10.2113/gsecongeo.90.6.1841CrossrefGoogle Scholar

  • [27] Fournier R.O., The behavior of silica in hydrothermal solutions. Reviews in Economic Geology, 1985, 45–61 Google Scholar

  • [28] Sander M.V., Black J.E., Crystallization and recrystallization of growth-zoned vein quartz crystals from epithermal systems; implications for fluid inclusion studies. Econ. Geol., 1988, 83, 1052–1060 http://dx.doi.org/10.2113/gsecongeo.83.5.1052CrossrefGoogle Scholar

  • [29] Simmons S.F., Christenson B.W., Origins of calcite in a boiling geothermal system. Am. J. Sci., 1994, 294, 361–400 http://dx.doi.org/10.2475/ajs.294.3.361CrossrefGoogle Scholar

  • [30] Clark K.F., Foster C.T., Damon P.E., Cenozoic mineral deposits and subduction-related magmatic arcs in Mexico. GSA Bulletin, 1982, 93, 533–544 http://dx.doi.org/10.1130/0016-7606(1982)93<533:CMDASM>2.0.CO;2CrossrefGoogle Scholar

  • [31] Godchaux M.M., Bonnichsen B., Aguirre Diaz G.d.J., Aranda Gomez J.J., Rangel Solis G., Anonymous, Volcanological and tectonic evolution of a complex Oligocene caldera system, Guanajuato mining district, central Mexico. Abstracts with Programs — Geological Society of America, 2003, 35, 8 Google Scholar

  • [32] Randall J.A., Saldana AE., Clark K.F., Exploration in a volcano-plutonic center at Guanajuato, Mexico. Econ. Geol., 1994, 89, 1722–1751 http://dx.doi.org/10.2113/gsecongeo.89.8.1722CrossrefGoogle Scholar

  • [33] Stewart M., Geology of Guanajuato and La Luz Areas, Mexico, 2006, Unpublished geologic map Google Scholar

  • [34] Taylor P.S., Mineral variations in the silver veins of Guanajuato, Mexico., Dartmouth College, Hanover, 1971, PhD Thesis Google Scholar

  • [35] Buchanan L.J., Precious metal deposits associated with volcanic environments in the Southwest. Arizona Geological Society Digest, 1981, 14, 237–262 Google Scholar

  • [36] Great Panther Silver, Great Panther Silver Confirms Continuity of Santa Margarita Gold-Silver Veins and Extends Guanajuatito Mineralized Zone to Depth at Guanajuato. News Releases, 2011 http://www.greatpanther.com/s/NewsReleases.asp?ReportID=493749&_Type=News-Releases&_-Title=Great-Panther-Silver-Confirms-Continuity-of-Santa-Margarita-Gold-Silver-Vei... Google Scholar

  • [37] Goldstein R.H., Reynolds T.J., Systematics of fluid inclusions in diagenetic minerals. SEPM Short Course Notes, 1993, 31, 213 Google Scholar

  • [38] Bodnar R.J., Introduction to fluid inclusions. Short Course Series, Mineralogical Association of Canada, 2003, 32, 1–8 Google Scholar

  • [39] Sterner S.M., Bodnar R.J., Synthetic fluid inclusions in natural quartz; 1, Compositional types synthesized and applications to experimental geochemistry. Geochim. Cosmochim. Ac., 1984, 48, 2659–2668 http://dx.doi.org/10.1016/0016-7037(84)90314-4CrossrefGoogle Scholar

  • [40] Bodnar R.J., Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim. Cosmochim. Ac., 1993, 57, 683–684 http://dx.doi.org/10.1016/0016-7037(93)90378-ACrossrefGoogle Scholar

  • [41] Cline J.S., Bodnar R.J., Rimstidt J.D., Numerical simulation of fluid flow and silica transport and deposition in boiling hydrothermal solutions; application to epithermal gold deposits. J. Geophys. Res., 1992, 97, 9085–9103 http://dx.doi.org/10.1029/91JB03129CrossrefGoogle Scholar

  • [42] Simmons S.F., Browne P.R.L., Hydrothermal minerals and precious metals in the Broadlands-Ohaaki geothermal system: Implications for understanding low-sulfidation epithermal environments. Econ. Geol., 2000, 95, 971–999 Google Scholar

  • [43] Henley R.W., Brown K.L., A practical guide to the thermodynamics of geothermal fluids and hydrothermal ore deposits. Reviews in Economic Geology, 1985, 2, 25–44 Google Scholar

  • [44] Church J.A., The Mines of La Luz, Guanajuato, Mexico II. The Engineering and Mining Journal, 1907, 105–110 Google Scholar

  • [45] Wenxin L., Modeling description and spectroscopic evidence of surface acid-base properties of natural illites. Water Res., 2001, 35, 4111–4125 http://dx.doi.org/10.1016/S0043-1354(01)00156-7CrossrefGoogle Scholar

About the article

Published Online: 2012-05-13

Published in Print: 2012-06-01


Citation Information: Open Geosciences, ISSN (Online) 2391-5447, DOI: https://doi.org/10.2478/s13533-011-0057-8.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Helen Mango, Greg Arehart, Naomi Oreskes, and Half Zantop
Mineralium Deposita, 2014, Volume 49, Number 1, Page 119

Comments (0)

Please log in or register to comment.
Log in