Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year

IMPACT FACTOR 2016 (Open Geosciences): 0.475

CiteScore 2016: 0.87

SCImago Journal Rank (SJR) 2016: 0.346
Source Normalized Impact per Paper (SNIP) 2016: 0.690

Open Access
See all formats and pricing
More options …

Composition and origin of nodules from the ≈20 ka Pomici di Base (PB)-Sarno eruption of Mt. Somma — Vesuvius, Italy

Rita Klébesz
  • Dept. of Geosciences, Virginia Polytechnic Institute and State University, 4044 Derring Hall, Blacksburg, VA, 24061, USA
  • Dept. of Earth Sciences, University of Naples “Federico II”, Via Mezzocannone 8, Naples, 80134, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Robert Bodnar
  • Dept. of Geosciences, Virginia Polytechnic Institute and State University, 4044 Derring Hall, Blacksburg, VA, 24061, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Benedetto Vivo / Kálmán Török / Annamaria Lima / Paola Petrosino
Published Online: 2012-05-13 | DOI: https://doi.org/10.2478/s13533-011-0059-6


Nodules (coarse-grain “plutonic” rocks) were collected from the ca. 20 ka Pomici di Base (PB)-Sarno eruption of Mt. Somma-Vesuvius, Italy. The nodules are classified as monzonite-monzogabbro based on their modal composition. The nodules have porphyrogranular texture, and consist of An-rich plagioclase, K-feldspar, clinopyroxene (ferroan-diopside), mica (phlogopite-biotite) ± olivine and amphibole. Aggregates of irregular intergrowths of mostly alkali feldspar and plagioclase, along with mica, Fe-Ti-oxides and clinopyroxene, in the nodules are interpreted as crystallized melt pockets.

Crystallized silicate melt inclusions (MI) are common in the nodules, especially in clinopyroxenes. Two types of MI have been identified. Type I consists of mica, Fe-Ti-oxides and/or dark green spinel, clinopyroxene, feldspar and a vapor bubble. Volatiles (CO2, H2O) could not be detected in the vapor bubbles by Raman spectroscopy. Type II inclusions are generally lighter in color and contain subhedral feldspar and/or glass and several opaque phases, most of which are confirmed to be oxide minerals by SEM analysis. Some of the opaque-appearing phases that are below the surface may be tiny vapor bubbles. The two types of MI have different chemical compositions. Type I MI are classified as phono-tephrite — tephri-phonolite — basaltic trachy-andesite, while Type II MI have basaltic composition. The petrography and MI geochemistry led us to conclude that the nodules represent samples of the crystal mush zone in the active plumbing system of Mt. Somma-Vesuvius that were entrained into the upwelling magma during the PB-Sarno eruption.

Keywords: Mt. Somma-Vesuvius; nodules; melt inclusions; crystal mush zone

  • [1] Tait S.R., Wörner G., Van Den Bogaard P., Schmincke H.-U., Cumulate nodules as evidence for convective fractionation in a phonolite magma chamber. J. Volcanol. Geotherm. Res., 1989, 37, 21–37 http://dx.doi.org/10.1016/0377-0273(89)90111-XCrossrefGoogle Scholar

  • [2] Mattioli M., Upton B.G.J., Renzulli A., Sub-volcanic crystallization at Sete Cidades volcano, Sao Miguel, Azores, inferred from mafic and ultramafic plutonic nodules. Mineral. Petrol., 1997, 60, 1–26 http://dx.doi.org/10.1007/BF01163132CrossrefGoogle Scholar

  • [3] Holness M.B., Bunbury J.M., Insights into continental rift-related magma chambers: Cognate nodules from the Kula Volcanic Province, Western Turkey. J. Volcanol. Geotherm. Res., 2006, 153, 241–261 http://dx.doi.org/10.1016/j.jvolgeores.2005.12.004CrossrefGoogle Scholar

  • [4] Hermes O.D., Cornell W.C., Petrochemical significance of xenolithic nodules associated with potashrich lavas of Somma-Vesuvius volcano, NSF final technical report, University of Rhode Island, 1978 Google Scholar

  • [5] Belkin H.E., De Vivo B., Roedder E., Cortini M., Fluid inclusion geobarometry from ejected Mt. Somma-Vesuvius nodules. Am. Mineral., 1985, 70, 288–303 Google Scholar

  • [6] Belkin H.E., De Vivo B., Fluid inclusion studies of ejected nodules from plinian eruptions of Mt. Somma-Vesuvius. J. Volcanol. Geotherm. Res., 1993, 58, 89–100 http://dx.doi.org/10.1016/0377-0273(93)90103-XCrossrefGoogle Scholar

  • [7] Gilg H.A., Lima A., Somma R., Belkin H.E., De Vivo B., Ayuso R.A., Isotope geochemistry and fluid inclusion study of skarns from Vesuvius. Mineral. Petrol., 2001, 73, 145–176 http://dx.doi.org/10.1007/s007100170015CrossrefGoogle Scholar

  • [8] Fulignati P., Kamenetsky V.S., Marianelli P., Sbrana A., Mernagh T.P., Melt inclusion record of immiscibility between silicate, hydrosaline, and carbonate melts: Applications to skarn genesis at Mount Vesuvius. Geology, 2001, 29, 1043–1046 http://dx.doi.org/10.1130/0091-7613(2001)029<1043:MIROIB>2.0.CO;2CrossrefGoogle Scholar

  • [9] Fulignati P., Kamenetsky V.S., Marianelli P., Sbrana A., Fluid inclusion evidence of second immiscibility within magmatic fluids (79 AD eruption of Mt. Vesuvius). Periodico di Mineralogia, 2005, 74, 43–54 Google Scholar

  • [10] De Vivo B., Lima A., Kamenetsky V.S., Danyushevsky L.V., Fluid and melt inclusions in the sub-volcanic environments from volcanic systems: Examples from the Neapolitan area and Pontine Islands, Italy. In: Mineralogical Association of Canada Short Course 36. Montreal, Quebec, 2006, 211–237 Google Scholar

  • [11] Lima A., Danyushevsky L.V., De Vivo B., Fedele L., A model for the evolution of the Mt. Somma-Vesuvius magmatic system based on fluid and melt inclusion investigations. In: De Vivo B., Bodnar R.J., Melt Inclusions in Volcanic Systems: Methods, Applications, Problems. Developments in Volcanology. Elsevier Press, Amsterdam, 2003, 227–249 http://dx.doi.org/10.1016/S1871-644X(03)80032-3CrossrefGoogle Scholar

  • [12] Lima A., De Vivo B., Fedele L., Sintoni F., Milia A., Geochemical variations between the 79 AD and 1944 AD Somma-Vesuvius volcanic products: Constraints on the evolution of the hydrothermal system based on fluid and melt inclusions. Chem. Geol., 2007, 237, 401–417 http://dx.doi.org/10.1016/j.chemgeo.2006.07.011CrossrefGoogle Scholar

  • [13] De Vivo B., Rolandi G., Gans P.B., Calvert A., Bohrson W.A., Spera F.J., Belkin H.E., New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy). Mineral. Petrol., 2001, 73, 47–65 http://dx.doi.org/10.1007/s007100170010CrossrefGoogle Scholar

  • [14] Brocchini D., Principe C., Castradori D., Laurenzi M.A., Gorla L., Quaternary evolution of the southern sector of the Campanian Plain and early Somma-Vesuvius activity: insights from the Trecase 1 well. Mineral. Petrol., 2001, 73, 67–91 http://dx.doi.org/10.1007/s007100170011CrossrefGoogle Scholar

  • [15] Santacroce R., Cioni R., Marianelli P., Sbrana A., Sulpizio R., Zanchetta G., Donahue D.J., Joron J.L., Age and whole rock-glass compositions of proximal pyroclastics from the major explosive eruptions of Somma-Vesuvius: A review as a tool for distal tephrostratigraphy. J. Volcanol. Geotherm. Res., 2008, 177, 1–18 http://dx.doi.org/10.1016/j.jvolgeores.2008.06.009Web of ScienceCrossrefGoogle Scholar

  • [16] Rolandi G., The eruptive history of Somma-Vesuvius. In: Cortini M., De Vivo B., Volcanism and Archeology in Mediterranean Area. Reserch Signpost. Trivandrum, 1997, 77–88 Google Scholar

  • [17] Ayuso R.A., De Vivo B., Rolandi G., Seal R.R., Paone A., Geochemical and isotopic (Nd-Pb-Sr-O) variations bearing on the genesis of volcanic rocks from Vesuvius, Italy. J. Volcanol. Geotherm. Res., 1998, 82, 53–78 http://dx.doi.org/10.1016/S0377-0273(97)00057-7CrossrefGoogle Scholar

  • [18] De Vivo B., Petrosino P., Lima A., Rolandi G., Belkin H., Research progress in volcanology in the Neapolitan area, southern Italy: a review and some alternative views. Mineral. Petrol., 2010, 99, 1–28 http://dx.doi.org/10.1007/s00710-009-0098-6Web of ScienceCrossrefGoogle Scholar

  • [19] Paone A., The geochemical evolution of the Mt. Somma-Vesuvius volcano. Mineral. Petrol., 2006, 87, 53–80 http://dx.doi.org/10.1007/s00710-005-0103-7CrossrefGoogle Scholar

  • [20] Bertagnini A., Landi P., Rosi M., Vigliargio A., The Pomici di Base plinian eruption of Somma-Vesuvius. J. Volcanol. Geotherm. Res., 1998, 83, 219–239 http://dx.doi.org/10.1016/S0377-0273(98)00025-0CrossrefGoogle Scholar

  • [21] Landi P., Bertagnini A., Rosi M., Chemical zoning and crystallization mechanisms in the magma chamber of the Pomici di Base plinian eruption of Somma-Vesuvius (Italy). Contrib. Mineral. Petrol., 1999, 135, 179–197 http://dx.doi.org/10.1007/s004100050505CrossrefGoogle Scholar

  • [22] Thomas J.B., Bodnar R.J., A technique for mounting and polishing melt inclusions in small (<1 mm) crystals. Am. Mineral., 2002, 87, 1505–1508 Google Scholar

  • [23] Halter W.E., Pettke T., Heinrich C.A., Rothen-Rutishauser B., Major to trace element analysis of melt inclusions by laser-ablation ICP-MS: methods of quantification. Chem. Geol., 2002, 183, 63–86 http://dx.doi.org/10.1016/S0009-2541(01)00372-2CrossrefGoogle Scholar

  • [24] Mutchler S., Fedele L., Bodnar R.J., Analysis Management System (AMS) for reduction of laser ablation ICPMS data. In: Sylvester P., Laser-Ablation-ICPMS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada, Vancouver, BC, 2008, 318–327 Google Scholar

  • [25] Norman M.D., Pearson N.J., Sharma A., Griffin W.L., Quantitative analysis of trace elements in geological materials by laser ablation ICPMS: Instrumental Operating Conditions and Calibration Values of NIST Glasses. Geostand. Newslett., 1996, 20, 247–261 http://dx.doi.org/10.1111/j.1751-908X.1996.tb00186.xCrossrefGoogle Scholar

  • [26] Roedder E., Origin and significance of magmatic inclusions. Bull. Mineral., 1979, 102, 487–510 Google Scholar

  • [27] Bodnar R.J., Student J.J., Melt inclusions in plutonic rocks: petrography and microthermometry. In: Webster J.D., Melt inclusions in plutonic rocks. Mineralogical Association of Canada, 2006, 1–25 Google Scholar

  • [28] Esposito R., Bodnar R.J., Danyushevsky L.V., De Vivo B., Fedele L., Hunter J., Lima A., Shimizu N., Volatile Evolution of magma associated with the Solchiaro eruption in the Phlegrean Volcanic District (Italy). J. Petrol., 2011, 52, 2431–2460 http://dx.doi.org/10.1093/petrology/egr051CrossrefGoogle Scholar

  • [29] Belkin H.E., De Vivo B., Török K., Webster J.D., Preeruptive volatile content, melt-inclusion chemistry, and microthermometry of interplinian Vesuvius lavas (pre-A.D. 1631). J. Volcanol. Geotherm. Res., 1998, 82, 79–95 http://dx.doi.org/10.1016/S0377-0273(97)00058-9CrossrefGoogle Scholar

  • [30] Le Bas M.J., Le Maitre R.W., Streckeisen A., Zanettin B., A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol., 1986, 27, 745–750 Google Scholar

  • [31] Sun S.-S., McDonough W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders A.D., Norry M.J., Magmatism in the Ocean Basins. — Geological Society Special Publication. 1989, 313–345 CrossrefGoogle Scholar

  • [32] Putirka K., Thermometers and Barometers for Volcanic Systems. In: Putirka K., Tepley III F.J., Minerals, inclusions and volcanic processes. Mineralogical Society of America, 2008, 61–120 Web of ScienceGoogle Scholar

  • [33] Cioni R., Santacroce R., Sbrana A., Pyroclastic deposits as a guide for reconstructing the multi-stage evolution of the Somma-Vesuvius caldera. Bull. Volcanol., 1999, 61, 207–222 http://dx.doi.org/10.1007/s004450050272CrossrefGoogle Scholar

  • [34] Rolandi G., Bellucci F., Cortini M., A new model for the formation of the Somma Caldera. Mineral. Petrol., 2004, 80, 27–44 http://dx.doi.org/10.1007/s00710-003-0018-0CrossrefGoogle Scholar

  • [35] Bruno P.P.G., Cippitelli G., Rapolla A., Seismic study of the Mesozoic carbonate basement around Mt. Somma-Vesuvius, Italy. J. Volcanol. Geotherm. Res., 1998, 84, 311–322 http://dx.doi.org/10.1016/S0377-0273(98)00023-7CrossrefGoogle Scholar

  • [36] De Natale G., Troise C., Trigila R., Dolfi D., Chiarabba C., Seismicity and 3-D substructure at Somma-Vesuvius volcano: evidence for magma quenching. Earth Planet. Sci. Lett., 2004, 221, 181–196 http://dx.doi.org/10.1016/S0012-821X(04)00093-7CrossrefGoogle Scholar

  • [37] Cella F., Fedi M., Florio G., Grimaldi M., Rapolla A., Shallow structure of the Somma-Vesuvius volcano from 3D inversion of gravity data. J. Volcanol. Geotherm. Res., 2007, 161, 303–217 http://dx.doi.org/10.1016/j.jvolgeores.2006.12.013Google Scholar

  • [38] Danyushevsky L.V., Leslie R.A.J., Crawford A., Durance P., Melt inclusions in primitive olivine phenocrysts: the role of localized reaction processes in the origin of anomalous compositions. J. Petrol., 2004, 45, 2531–2553 http://dx.doi.org/10.1093/petrology/egh080CrossrefGoogle Scholar

  • [39] Piochi M., De Vivo B., Ayuso R.A., The magma feeding system of Somma-Vesuvius (Italy) strato-volcano: new inferences from a review of geochemical and Sr, Nd, Pb and O isotope data. In: De Vivo B., Volcanism in the Campania Plain: Vesuvius, Campi Flegrei and Ignimbrites. Elsevier B. V., 2006, Chapter 9: 181–202 Google Scholar

  • [40] Peccerillo A., Plio-Quaternary Volcanism in Italy: Petrology, Geochemistry, Geodynamics Springer, Heidelberg, 2005 Google Scholar

About the article

Published Online: 2012-05-13

Published in Print: 2012-06-01

Citation Information: Open Geosciences, Volume 4, Issue 2, Pages 324–337, ISSN (Online) 2391-5447, DOI: https://doi.org/10.2478/s13533-011-0059-6.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in