degruyter.com uses cookies to store information that enables us to optimize our website and make browsing more comfortable for you. To learn more about the use of cookies, please read our privacy policy.OK
Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year


IMPACT FACTOR 2017: 0.696
5-year IMPACT FACTOR: 0.736

CiteScore 2017: 0.89

SCImago Journal Rank (SJR) 2017: 0.323
Source Normalized Impact per Paper (SNIP) 2017: 0.674

Open Access
Online
ISSN
2391-5447
See all formats and pricing
More options …

Soot in Cretaceous-Paleogene boundary clays worldwide: is it really derived from fossil fuel beds close to Chicxulub?

Pavle Premović
  • Laboratory for Geochemistry, Cosmochemistry and Astrochemistry, University of Niš, 18000, Niš, P.O. Box 224, Serbia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-08-21 | DOI: https://doi.org/10.2478/s13533-011-0073-8

Abstract

High soot contents have been reported in Cretaceous-Paleogene boundary (KPB) clays worldwide. One of the interpretations suggests this material comes from combustion of fossil fuels such as crude oil, coal or oil shales near the Chicxulub impact site. Combustion was triggered by the KPB impactor. In this Note, I show that the estimated mass of crude oil (or fossil hydrocarbons in general) burned (ca. 1017–1019 g), based on the average amount of soot (0.0022–0.012 g cm−2) or elemental carbon (0.011 g cm−2) found at the marine KPB sites, contradicts the fossil hydrocarbons hypothesis.

Keywords: Cretaceous-Paleogene boundary; soot; crude oil; combustion; fossil fuel; fossil carbon

  • [1] Shukolyukov A., Lugmair G.W., Isotopic evidence for the Cretaceous-Tertiary impactor and its type. Science, 1998, 282, 927–930 http://dx.doi.org/10.1126/science.282.5390.927CrossrefGoogle Scholar

  • [2] Wolbach W.S., Lewis R.S., Anders E., Cretaceous extinctions: evidence for wildfires and search for meteoritic material. Science, 1985, 230, 167–170 http://dx.doi.org/10.1126/science.230.4722.167CrossrefGoogle Scholar

  • [3] Wolbach W.S., Gilmour I., Anders E., Orth C.J., Brooks R.R., Global fire at the Cretaceous-Tertiary boundary. Nature, 1988, 334, 665–669 http://dx.doi.org/10.1038/334665a0CrossrefGoogle Scholar

  • [4] Wolbach W.S., Anders E., Nazarov M.A., Fires at the K-T boundary: carbon at the Sumbar, Turkmenia, site. Geochim. Cosmochim. Acta, 1990, 54, 1133–1146 http://dx.doi.org/10.1016/0016-7037(90)90444-PCrossrefGoogle Scholar

  • [5] Wolbach W.S., Gilmour I., Anders E., Major wildfires at the Cretaceous-Tertiary boundary. In: Sharpton B., Ward P. (Eds.), Global catastrophes in Earth history. Geological Society of America, Boulder, Special Paper 247, 1990, 391–400 Google Scholar

  • [6] Wolbach W.S., Widicus S.L., Kyte F.T., A search for soot from global wildfires in Central Pacific Cretaceous-Tertiary boundary and other extinction and impact horizon sediments. Astrobiology, 2003, 3, 91–97 http://dx.doi.org/10.1089/153110703321632444CrossrefGoogle Scholar

  • [7] Belcher C.M., Collinson M.E., Sweet A.R., Hildebrand A.R., Scott A.C., Constraints on the thermal energy released from the Chixculub impactor: new evidence from multi method charcoal analysis. J. Geol. Soc. London, 2005, 162, 591–602 http://dx.doi.org/10.1144/0016-764904-104CrossrefGoogle Scholar

  • [8] Gilmour I., Sephton M.A., Morgan J.V., Organic geochemistry of a hydrocarbon-rich calcarenite from the Chicxulub scientific drilling program. In: Proceedings of the 34th Lunar and Planetary Science Conference. Lunar and Planetary Institute, Houston, 2003, abs. 1771 Google Scholar

  • [9] Belcher C.M., Collinson M.E., Sweet A.R., Hildebrand A.R., Scott A.C., Fireball passes and nothing burnsthe role of thermal radiation in the K-T event: evidence from the charcoal record of North America. Geology, 2003, 31, 1061–1064 http://dx.doi.org/10.1130/G19989.1CrossrefGoogle Scholar

  • [10] Belcher C.M., Impacts and Wildfires 210 — An analysis of the K-T Event. In: Koeberl C., Gilmour I. (Eds.), Biological processes associated with impact events. Springer, Berlin, 2006, 221–243 http://dx.doi.org/10.1007/3-540-25736-5_10CrossrefGoogle Scholar

  • [11] Belcher C.M., Reigniting the Cretaceous-Palaeogene firestorm debate. Geology, 2009, 37, 1147–1148 http://dx.doi.org/10.1130/focus122009.1.CrossrefWeb of ScienceGoogle Scholar

  • [12] Harvey M.C., Brassell S.C., Belcher C.M., Montanari A., Combustion of fossil organic matter at the Cretaceous-Paleogene (K-P) boundary. Geology, 2008, 36, 355–358 http://dx.doi.org/10.1130/G24646A.1Web of ScienceCrossrefGoogle Scholar

  • [13] Ransohoff L.M., Knudson K., Bush B.W., Small R.D., Material inventories and smoke properties for U.S. target areas. Pacific-Sierra Research Corporation, Los Angeles, 1989 Google Scholar

  • [14] Turco R.P., Toon O.B., Ackerman T.P., Pollack J.B., Sagan C., Climate and smoke: an appraisal of nuclear winter. Science, 1990, 247, 166–176 http://dx.doi.org/10.1126/science.11538069CrossrefGoogle Scholar

  • [15] Shuvalov V.V., Artemieva N.A., Numerical modeling of Tunguska-like impacts. Planet. Space Sci., 2002, 50, 181–192 http://dx.doi.org/10.1016/S0032-0633(01)00079-4CrossrefGoogle Scholar

  • [16] Ebel D.S., Grossman L., Spinel-bearing spherules condensed from the Chicxulub impact-vapor plume. Geology, 2005, 33, 293–296 http://dx.doi.org/10.1130/G21136.1CrossrefGoogle Scholar

  • [17] Durda D.D., Kring D.A., Pierazzo E., Melosh H. J., Model calculations of the proximal and globally distributed distal ejecta from the Chicxulub impact crater. In: Proceedings of the 28th Lunar and Planetary Science Conference. Lunar and Planetary Institute, Houston, 1997, 315–316 Google Scholar

  • [18] Grajales-Nishimura J.M., Cedillo-Pardo E., Rosales-Domínguez C., Morán-Zenteno D.J., Alvarez W., Claeys P., Ruíz-Morales J., García-Hernández J., Padilla-Avila P., Sánchez-Ríos A., Chicxulub impact: the origin of reservoir and seal facies in the southeastern Mexico oil fields. Geology, 2000, 28, 307–310 http://dx.doi.org/10.1130/0091-7613(2000)28<307:CITOOR>2.0.CO;2CrossrefGoogle Scholar

  • [19] Heymann D., Yancey T.E, Wolbach W.S, Thiemens M.H, Johnson E.A, Roach D., Moecker S., Geochemical markers of the Cretaceous-Tertiary boundary event at Brazos River, Texas, USA. Geochim. Cosmochim. Acta, 1998, 62, 173–181 http://dx.doi.org/10.1016/S0016-7037(97)00330-XCrossrefGoogle Scholar

  • [20] Toon O.B., Zahnle K., Morrison D., Turco R.P., Covey C., Environmental perturbations caused by the impacts of asteroids and comets. Rev. Geophys., 1997, 35, 41–78 http://dx.doi.org/10.1029/96RG03038CrossrefGoogle Scholar

  • [21] Magoon L.B., Hudson T.L., Cook H.E., Pimienta-Tamabra(!)-a giant supercharged petroleum system in the southern Gulf of Mexico, onshore and offshore Mexico. In: Bartolini C., Buffler R.T., Cantu-Chapa A. (Eds.), The western Gulf of Mexico basin: tectonics, sedimentary basins, and petroleum systems. The American Association of Petroleum Geologists, USA, 75, 2001, 83–125 Google Scholar

About the article

Published Online: 2012-08-21

Published in Print: 2012-09-01


Citation Information: Open Geosciences, Volume 4, Issue 3, Pages 383–387, ISSN (Online) 2391-5447, DOI: https://doi.org/10.2478/s13533-011-0073-8.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in