Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year


IMPACT FACTOR 2016 (Open Geosciences): 0.475

CiteScore 2016: 0.87

SCImago Journal Rank (SJR) 2016: 0.346
Source Normalized Impact per Paper (SNIP) 2016: 0.690

Open Access
Online
ISSN
2391-5447
See all formats and pricing
More options …

Assessment of the sensitivity of the southern coast of the Gulf of Corinth (Peloponnese, Greece) to sea-level rise

Efthimios Karymbalis / Christos Chalkias / George Chalkias / Eleni Grigoropoulou / George Manthos / Maria Ferentinou
Published Online: 2012-12-08 | DOI: https://doi.org/10.2478/s13533-012-0101-3

Abstract

The eustatic sea-level rise due to global warming is predicted to reach approximately 18–59 cm by the year 2100, which necessitates the identification and protection of sensitive sections of coastline. In this study, the classification of the southern coast of the Gulf of Corinth according to the sensitivity to the anticipated future sealevel rise is attempted by applying the Coastal Sensitivity Index (CSI), with variable ranges specifically modified for the coastal environment of Greece, utilizing GIS technology. The studied coastline has a length of 148 km and is oriented along the WNW-ESE direction. CSI calculation involves the relation of the following physical variables, associated with the sensitivity to long-term sea-level rise, in a quantifiable manner: geomorphology, coastal slope, relative sea-level rise rate, shoreline erosion or accretion rate, mean tidal range and mean wave height. For each variable, a relative risk value is assigned according to the potential magnitude of its contribution to physical changes on the coast as the sea-level rises. Every section of the coastline is assigned a risk ranking based on each variable, and the CSI is calculated as the square root of the product of the ranked variables divided by the total number of variables. Subsequently, a CSI map is produced for the studied coastline. This map showed that an extensive length of the coast (57.0 km, corresponding to 38.7% of the entire coastline) is characterized as highly and very highly sensitive primarily due to the low topography, the presence of erosionsusceptible geological formations and landforms and fast relative sea-level rise rates. Areas of high and very high CSI values host socio-economically important land uses and activities.

Keywords: Sea-level rise; coastal geomorphology; sensitivity; GIS; Greece

  • [1] Rosenzweig C., Koroly D., Vicarelli M., Neofotis P., Wu Q., Casassa G., Menzel A., Root T.L., Estrella N., Seguin B., Tryjanowski P., Liu C., Rawlins S., Imeson A., Attributing physical and biological impacts to anthropogenic climate change. Nature, 2008, 453, 353–357 doi:10.1038/nature06937 http://dx.doi.org/10.1038/nature06937CrossrefGoogle Scholar

  • [2] Allen J.C., Komar P.D., Climate controls on US west coast erosion processes. J Coast Res, 2006, 22, 511–529. doi: http://dx.doi.org/10.2112/03-0108.1 http://dx.doi.org/10.2112/03-0108.1CrossrefGoogle Scholar

  • [3] Chen J.L., Wilson C.R., Tapley B.D., Satellite gravity measurements confirm accelerated melting of Greenland ice sheet. Science, 2006, 313: 1958–1960 doi:10.1126/science.1129007 http://dx.doi.org/10.1126/science.1129007CrossrefGoogle Scholar

  • [4] Stroeve J., Holland M.M., Meier W., Scambos T., Serreze M., Arctic seaice decline: faster than forecast. Geophys Res Lett, 2007, 34, L09501 doi:10.1029/2007GL029703 http://dx.doi.org/10.1029/2007GL029703CrossrefGoogle Scholar

  • [5] Rignot E., Bamber J.L., van der Broeke M.R., Davis C., Li Y., van de Berg W., van Meijgaard E., Recent Antarctic ice mass loss from radar interferometry and regional climate modeling. Nat Geosci, 2008, 1, 106–110 doi:10.1038/ngeo102 http://dx.doi.org/10.1038/ngeo102CrossrefGoogle Scholar

  • [6] Chen J.L., Wilson C.R., Tapley B.D., Blankenship D.D., Young D., Antarctic regional ice loss rates from GRACE. Earth Planet Sci Lett, 2008, 266, 140–148 doi:10.1016/j.epsl.2007.10.057 http://dx.doi.org/10.1016/j.epsl.2007.10.057CrossrefGoogle Scholar

  • [7] Cazenave A., Nerem R.S., Present day sea-level change: observations and causes. Rev Geophys, 2004, 42. doi:10.1029/2003RG000139 CrossrefGoogle Scholar

  • [8] Leuliette E.W., Nerem R.S., Mitchum G.T., Calibration of TOPEX/Poseidon and Jason altimeter data to construct a continuous record of mean sealevel change. Marine Geodesy, 2004, 27, 79–94 doi:10.1080/01490410490465193 http://dx.doi.org/10.1080/01490410490465193CrossrefGoogle Scholar

  • [9] Solomon S., Qin D., Manning M.(Eds.), IPCC (Intergovernmental Panel on Climate Change), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Google Scholar

  • [10] Strohecker K., World sea-levels to rise 1.5 m by 2100: scientists, an environmental news network and Reuters publications, 2008 available via http//www.enn.com/wildlife/article/34702 Google Scholar

  • [11] Tsimplis M.N., Baker T.F., Sea-level drop in the Mediterranean Sea: an indicator of deep water salinity and temperature changes? Geophys Res Lett, 2000, 27, 1731–1734 http://dx.doi.org/10.1029/1999GL007004CrossrefGoogle Scholar

  • [12] Tsimplis M.N., Josey S., Forcing the Mediterranean Sea by atmospheric oscillations over the North Atlantic. Geophys Res Lett, 2001, 28, 803–806 doi:10.1029/2000GL012098 http://dx.doi.org/10.1029/2000GL012098CrossrefGoogle Scholar

  • [13] Fenoglio-Marc L., Analysis and representation of regional sea-level variability from altimetry and atmospheric-oceanic data. Geophys J Int, 2001, 145, 1–18 doi:10.1046/j.1365-246x.2001.00284.x http://dx.doi.org/10.1046/j.1365-246x.2001.00284.xCrossrefGoogle Scholar

  • [14] Marcos M., Tsimplis M.N., Coastal sea-level trends in Southern Europe. Geophys J Int, 2008, 175, 70–82 doi: 10.1111/j.1365-246X.2008.03892.x. http://dx.doi.org/10.1111/j.1365-246X.2008.03892.xCrossrefGoogle Scholar

  • [15] Wu S., Yarnal B., Fisher A., Vulnerability of coastal communities to sea-level rise: a case study of Cape May County, New Jersey, USA. Clim Res, 2002, 22, 255–270 doi:10.3354/cr022255 http://dx.doi.org/10.3354/cr022255CrossrefGoogle Scholar

  • [16] Pendleton E.A., Thieler E.R., Williams S.J., Coastal vulnerability assessment of Cape Hattaras National Seashore (CAHA) to sea-level rise, 2004, USGS Open File Report 2004-1064. Available from http://pubs.usgs.gov/of/2004/1064/images/pdf/caha.pdf accessed on 15 Dec 2011. Google Scholar

  • [17] FitzGerald D.M., Fenster M.F., Argow B.A., Buynevich I.V., Coastal impacts due to sea-level rise. Annual Review of Earth and Planetary Sciences, 2008, 36, 601–647 http://dx.doi.org/10.1146/annurev.earth.35.031306.140139CrossrefGoogle Scholar

  • [18] Bruun P., Sea-level rise as a cause of shore erosion. Journal of Waterways and harbor Division, 1962, 88, 117–130. Google Scholar

  • [19] Thieler E.R., Hammar-Klose E.S., National Assessment of Coastal Vulnerability to Sea-Level Rise, U.S. Atlantic Coast. U.S. Geological Survey, 1999. Open-File Report, 99–593 Google Scholar

  • [20] Gortnitz V., Global coastal hazards from future sealevel rise. Palaeogeography, Palaeoclimatology, Palaeoecology (Global and Planetary Change Section), 1991, 89, 379–398 http://dx.doi.org/10.1016/0031-0182(91)90173-OCrossrefGoogle Scholar

  • [21] Diez P.G., Perillo G.M.E., Piccolo C.M., Vulnerability to sea-level rise on the coast of the Buenos Aires Province. J Coastal Res, 2007, 23, 19–126 doi:10.2112/04-0205.1 CrossrefGoogle Scholar

  • [22] Nageswara Rao H., Subraelu P., Venkateswara Rao T., Hema Malini B., Ratheesh R., Bhattacharya S., Rajawat, A.S., Ajai, Sea-level rise and coastal vulnerability: an assessment of Andhra Pradesh coast, India through remote sensing and GIS. J Coast Conserv, 2008, 12, 195–207 doi: 10.1007/s11852-009-0042-2 http://dx.doi.org/10.1007/s11852-009-0042-2CrossrefGoogle Scholar

  • [23] Shaw J., Taylor R.B., Forbes D.L., Ruz M.H., Solomon S., Sensitivity of the Canadian Coast to Sea-Level Rise. Geological Survey of Canada Bulletin, 1998, 505, 114 Google Scholar

  • [24] Catto N., Coastal erosion in Newfoundland. Department of Geography, Memorial University, Report, 2011 Google Scholar

  • [25] Abuodha PAO., Woodroffe C.D., Assessing vulnerability to sea-level rise using a coastal sensitivity index: a case study from southeast Australia. J Coast Conserv 2010, 14, 189–205 doi: 10.1007/s11852-010-0097-0 http://dx.doi.org/10.1007/s11852-010-0097-0CrossrefGoogle Scholar

  • [26] Boruff B., Emrich C., Cutter S.L., Erosion hazard vulnerability of US coastal countries. J Coast Res, 2005, 21(5), 932–942. doi: 10.2112/04-0172.1 http://dx.doi.org/10.2112/04-0172.1CrossrefGoogle Scholar

  • [27] Gornitz V., Daniels R.C., White T.W., Birdwell K.R., The development of a coastal vulnerability assessment database: vulnerability to sea-level rise in the U.S. southeast. J Coast Res, 1994, Special Issue 12, 327–338 Google Scholar

  • [28] Gaki-Papanastassiou K., Maroukian H., Pavlopoulos K., Zamani A., The implications of the expected sea-level rise on the low-lying areas of continental Greece in the next century. In: Marinos PG, Koukis GC, Tsianbaos GC Stournaras GC (eds) Proceedings International Symposium on Engineering Geology and the Environment, 1997, 121–126 Google Scholar

  • [29] Seni A., Coastal vulnerability to sea-level rise estimation utilizing Geographic Information Systems (GIS): the cases of Porto Heli and Ermioni (Peloponnese). Dissertation, Department of Geography, Harokopio University of Athens, Greece, 2007 (in Greek) Google Scholar

  • [30] Alexandrakis G., Karditsa A., Poulos S., Gionis G., Kampanis N., Assessment of the Aegean coasts vulnerability to sea-level rise. In: Proceedings of the 9th Pan-Hellenic Symposium on Oceanography and Fisheries, vol. I, 2009, 327–332 Google Scholar

  • [31] Alexandrakis G., Karditsa A., Poulos S., Ghionis G., Kampanis N.A., Vulnerability assessment for to erosion of the coastal zone to a potential sea-level rise: the case of the Aegean Hellenic coast. In: Sydow, A. (ed) Environmental Systems in Encyclopedia of Life Support Systems (EOLSS), Developed under the auspices of the UNESCO, Eolss Publisher, Oxford, UK, 2009 (http://www.eolss.net) Google Scholar

  • [32] Chatzieleftheriou M., Alexandrakis G., Poulos S., Gaki-Papanastassiou K., Maroukian H., Assessment of vulnerability to a future sea-level rise of the E and NE coast of Attica. In: Proceedings of the 8th Pan-Hellenic Geographical Conference, vol. 1, 2007, 298–305 Google Scholar

  • [33] Gaki-Papanastassiou K., Karymbalis E., Poulos S., Seni A., Zouva C., Coastal vulnerability assessment to sea-level rise based on geomorphological and oceanographical parameters: the case of Argolikos Gulf, Peloponnese, Greece. Hellenic Journal of Geosciences, 2011, 45, 109–121 Google Scholar

  • [34] Doukakis E., Coastal vulnerability and sensitivity parameters. Eur Water, 2005, 11, 3–7 Google Scholar

  • [35] Armijo R., Meyer B., King G., Rigo A., Papanastassiou D., Quaternary evolution of the Corinth Rift and its implications for the Late Cenozoic evolution of the Aegean. Geophys J Int, 1996, 126, 11–53. doi: 10.1111/j.1365-246X.1996.tb05264.x http://dx.doi.org/10.1111/j.1365-246X.1996.tb05264.xCrossrefGoogle Scholar

  • [36] Heezen B.C., Ewing M., Johnson G.L., The Gulf of Corinth floor. Deep Sea Research, 1966, 13, 381–411 Google Scholar

  • [37] Poulos S.E., Collins M.B., Pattiaratchi A., Cramp A., Gull W., Tsimplis M., Papatheodorou G., Oceanography and sedimentation in the semi-enclosed, deep-water Gulf of Corinth (Greece). Marine Geology, 1996, 134, 213–235 doi:http://dx.doi.org/10.1016/0025-3227(96)00028-X http://dx.doi.org/10.1016/0025-3227(96)00028-XCrossrefGoogle Scholar

  • [38] Tsimplis, M.N., Tidal oscillations in the Aegean and Ionian Seas. Estuarine, Coastal and Shelf Science, 1994, 39, 201–208 doi: http://dx.doi.org/10.1006/ecss.1994.1058 http://dx.doi.org/10.1006/ecss.1994.1058CrossrefGoogle Scholar

  • [39] Piper D.J.W., Stamatopoulos L., Poulimenos G., Doutsos T., Kontopoulos N., Quaternary history of the Gulfs of Patras and Corinth, Greece. Z Geomorphol, 1990, 34, 451–458 Google Scholar

  • [40] Chalkias C., Papadopoulos A., Ouils A., Karymbalis E., Detsis V., Land cover changes in the coastal periurban zone of Corinth, Greece. In: Ozhan E (ed) Proceedings of the Tenth International Conference on the Mediterranean Coastal Environment vol 2, 2011, 913–923 Google Scholar

  • [41] Parcharidis I., Kourkouli P., Karymbalis E., Foumelis M., Karathanassi V. Time Series Synthetic Aperture Radar Interferometry for Ground Deformation Monitoring over a Small Scale Tectonically Active Deltaic Environment (Mornos, Central Greece). J Coast Res, 2012 (In-Press). doi: http://dx.doi.org/10.2112/JCOASTRES-D-11-00106.1 CrossrefGoogle Scholar

  • [42] Soukisian T., Hatzinaki M., Korres G., Papadopoulos A., Kallos G., Anadranistakis E., Wave and wind Atlas of the Hellenic Seas. Hellenic Centre for Marine Research Publ., 2007 Google Scholar

  • [43] Pendleton E.A., Thieler E.R., Jeffress S.W., Coastal vulnerability assessment of Goldan Gate National Recreation Area to sea-level rise. USGS Open_file Report, 2005, 2005–1058 Google Scholar

  • [44] Dwarakish G.S., Vinay S.A., Natesan U., Asano T., Kakinuma T., Venkataramana K., Jagedeesha B., Badita M.K., Coastal vulnerability assessment of the future sea-level rise in Udupi coastal zone of Karnataka state, west coast of India. Ocean & Coastal Management, 2009, 52, 467–478 doi: 10.1016/j.ocecoman.2009.07.007 http://dx.doi.org/10.1016/j.ocecoaman.2009.07.007CrossrefGoogle Scholar

  • [45] Pendleton E.A., Thieler E.R., Williams S.J., Importance of coastal change variables in determining vulnerability to sea-↭d kale-level change. J Coast Res, 2010, 26, 176–183 doi: 10.2112/08-1102.1 http://dx.doi.org/10.2112/08-1102.1CrossrefGoogle Scholar

  • [46] Maroukian H., Karymbalis E., Geomorphic evolution of the fan delta of the Evinos river in western Greece and human impacts during the last 150 years. Z Geomorphol, 2004, 48, 201–217. doi:0372-8854/04/0201 Google Scholar

  • [47] Papadopoulos C., Comprehensive assessment of coastal erosion in the regions of north Amvrakikos Gulf, Acheloos delta, Nestos delta, Kos, Limnos, and Kitros. Diploma Thesis, Technical University of Crete, Chanea, Greece, 2009 Google Scholar

  • [48] Foteinis S., Papadopoulos C., Koutsogiannaki I., Synolakis C., Coastal erosion and accretion rates in Greece. Geophysical Research Abstracts, 2010, 12, EGU2010–7499 Google Scholar

  • [49] Lambeck K., Sea-level change and shore-line evolution in Aegean Greece since Upper Palaeolithic time, Antiquity 1996, 70, 588–611 Google Scholar

  • [50] Houghton S.L., Roberts G.P., Papanikolaou I.D., McArthur J,M., New 234U-230Th coral dates from the western Gulf of Corinth: Implications for extensional tectonics. Geophys Res Lett. 2003, 30, 19, SDE13-1 - SDE-13-4, doi: 10.1029/2003GL018112, 2003 doi: http://dx.doi.org/doi:10.1029/2003GLO18112 http://dx.doi.org/10.1029/2003GL018112Google Scholar

  • [51] Palyvos N., Pantosti D., De Martini P.M., Lemeille F., Sorel D., Pavlopoulos K., The Aigion-Neos Erineos coastal normal fault system (western Corinth Rift, Greece): Geomorphological signature, recent earthquake history, and evolution. Journal of Geophysical Research, 2005, 110, B09302, doi:10.1029/2004JB003165 http://dx.doi.org/10.1029/2004JB003165CrossrefGoogle Scholar

  • [52] Palyvos N., Lemeille F., Sorel D., Pantosti D., Pavlopoulos K., Geomorphic and biological indicators of paleoseismicity and Holocene uplift rate at a coastal normal fault footwall (western Corinth Gulf, Greece). Geomorphology, 2008, 96, 16–38 doi: 10.1016/j.geomorph.2007.07.010 http://dx.doi.org/10.1016/j.geomorph.2007.07.010CrossrefGoogle Scholar

  • [53] Koukouvelas I., Stamatopoulos L., Katsonopoulou D., Pavlidis S., A palaeoseismological and geoarchaeological investigation of the Eliki fault, Gulf of Corinth, Greece. Journal of Structural Geology, 2001, 23, 531–543 doi: S0191-8141(00)00124-3 http://dx.doi.org/10.1016/S0191-8141(00)00124-3Google Scholar

  • [54] Pavlides S.B., Koukouvelas I.K., Kokkalas S., Stamatopoulos L., Keramydas D., Tsodoulos, I., Late Holocene evolution of the East Eliki fault, Gulf of Corinth (Central Greece). Quaternary International, 2004, 115–116, 139–154 doi: 10.1016/S1040-6182(03)00103-4 http://dx.doi.org/10.1016/S1040-6182(03)00103-4CrossrefGoogle Scholar

About the article

Published Online: 2012-12-08

Published in Print: 2012-12-01


Citation Information: Open Geosciences, Volume 4, Issue 4, Pages 561–577, ISSN (Online) 2391-5447, DOI: https://doi.org/10.2478/s13533-012-0101-3.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Vitor Zanetti, Wilson de Sousa Junior, and Débora De Freitas
Sustainability, 2016, Volume 8, Number 8, Page 811
[2]
Md. Ashraful Islam, Debashis Mitra, Ashraf Dewan, and Syed Humayun Akhter
Ocean & Coastal Management, 2016, Volume 127, Page 1
[3]
Efthimios Karymbalis, Kalliopi Gaki-Papanastassiou, Konstantinos Tsanakas, and Maria Ferentinou
Journal of Maps, 2016, Volume 12, Number sup1, Page 12
[4]
Malay Kumar Pramanik, Sumantra Sarathi Biswas, Biswajit Mondal, and Raghunath Pal
Environment, Development and Sustainability, 2016, Volume 18, Number 6, Page 1635
[5]
Pravin D. Kunte, Nitesh Jauhari, Utkarsh Mehrotra, Mahender Kotha, Andrew S. Hursthouse, and Alexandre S. Gagnon
Ocean & Coastal Management, 2014, Volume 95, Page 264
[6]
J. Shaji
Natural Hazards, 2014, Volume 73, Number 3, Page 1369

Comments (0)

Please log in or register to comment.
Log in