Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year


IMPACT FACTOR 2016 (Open Geosciences): 0.475

CiteScore 2016: 0.87

SCImago Journal Rank (SJR) 2016: 0.346
Source Normalized Impact per Paper (SNIP) 2016: 0.690

Open Access
Online
ISSN
2391-5447
See all formats and pricing
More options …

Comparison of geostatistical approaches dealing with the distribution of snow

Marketa Prusova
  • Institute of Geoinformatics, VSB — Technical University of Ostrava, 17.listopadu 2172/15, Ostrava, 708 33, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lucie Orlikova
  • Institute of Geoinformatics, VSB — Technical University of Ostrava, 17.listopadu 2172/15, Ostrava, 708 33, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marketa Hanzlova
Published Online: 2012-12-08 | DOI: https://doi.org/10.2478/s13533-012-0103-1

Abstract

This paper deals with a stochastic simulation. Snow cover, representing a regionalized variable, was studied and used as an input parameter for a stochastic simulation. The first step included basic statistical analysis of individual parameters of snow, e.g. snow height. In the next step, an analysis of relationships between the snow and the geomorphological parameters (altitude, slope and aspect) was conducted. The most current methods of spatial interpolation and multifactor evaluation are based on weighted regression relationships. Primarily, the use of conditional stochastic simulation was tested in a variety of software. The main aim of this investigation is to compare selected interpolation methods with stochastic simulation, based on the development of the values and on the evaluation of the incidence of extreme events. The study shall provide users with recommendations for selecting the optimal interpolation method and its application to real data.

Keywords: interpolation; stochastic simulation; snow cover

  • [1] E.R. Cook, R.D. D’Arrigo, M.E. Mann, A well verified multi proxy reconstruction of the winter north Atlantic oscillation index since A.D. 1400. J. Climate, 2002, 15, 1754–1764 http://dx.doi.org/10.1175/1520-0442(2002)015<1754:AWVMRO>2.0.CO;2CrossrefGoogle Scholar

  • [2] N.P. Gillet, D.W.J. Thompson, Simulation of recent southern hemisphere climate change. Science, 2003, 302, 273–275 http://dx.doi.org/10.1126/science.1087440CrossrefGoogle Scholar

  • [3] J.I. Lopez-Moreno, J. Latron, A. Lehmann, Effect of sample and grid size on the accuracy and stability of regression-based snow interpolation methods. Hydrol. Process, 2000, 24, 1914–1928 Web of ScienceGoogle Scholar

  • [4] M. Bavay, M. Lehning, T. Jonas, H. Lowe, Simulations of future snow cover and discharge in Alpine headwater catchments. Hydrol. Process., 2009, 23, 95–108 http://dx.doi.org/10.1002/hyp.7195Web of ScienceCrossrefGoogle Scholar

  • [5] T. A. Erickson, M.W. Williams, A. Winstral, Persistence of topographic controls on the spatial distribution of snow in rugged mountain terrain, Colorado, United States. Water Resour. Res., 2005, 41, 1–17 http://dx.doi.org/10.1029/2003WR002973CrossrefGoogle Scholar

  • [6] A. Winstral, K. Elder, R. E. Davis, Spatial snow modeling of wind-redistributed snow using terrain based parameters. J. Hydrometeorol., 2002, 3, 524–538 http://dx.doi.org/10.1175/1525-7541(2002)003<0524:SSMOWR>2.0.CO;2CrossrefGoogle Scholar

  • [7] D.M. Gray, D. M. Male, Handbook of snow: Principles, processes, management and use, Blackburn Press, Caldwell, New Jersey, 1981 Google Scholar

  • [8] G.H. Roe, Orographic precipitation, Annual Review. Earth Planet Science, 2005, 33, 645–671 http://dx.doi.org/10.1146/annurev.earth.33.092203.122541CrossrefGoogle Scholar

  • [9] R. Webster and M.A. Oliver, Geostatistics for environmental scientists, 2nd edition, John Wiley & Sons, 2007 Google Scholar

  • [10] E. Pardo-Iguzquiza, M. Chica-Olmo, Geostatistical simulation when the number of experimental data is small: an alternative paradigm. Stoch. Environ. Res. Risk. Assess, 2008, 22, 325–337 http://dx.doi.org/10.1007/s00477-007-0118-1CrossrefWeb of ScienceGoogle Scholar

  • [11] D.G. Tarboton, l. G. Blosch, K. Cooley, R. Kirnbauer, C. Luce, Spatial snow cover processes at Kűhtai and Reynolds Creek. Spatial Patterns in Catchment Hydrology: Observation and modelling, Cambridge University Press, 2000, 158–186 Google Scholar

  • [12] S. Kristek, J. Holusa, N. Urbancova, J. Trombik, K. Drapela, Expeditionary measurements of snow in extensively forested Carpathian mountains: evaluating parameters variability. Carpathian Journal of Earth and Environmental Sciences, 2011, 6, 45–58 Google Scholar

  • [13] M. Kanok, Statistical methods in management, Czech Technical University in Prague, 1996 Google Scholar

About the article

Published Online: 2012-12-08

Published in Print: 2012-12-01


Citation Information: Open Geosciences, Volume 4, Issue 4, Pages 603–613, ISSN (Online) 2391-5447, DOI: https://doi.org/10.2478/s13533-012-0103-1.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in