Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

IMPACT FACTOR 2017: 0.696
5-year IMPACT FACTOR: 0.736

CiteScore 2017: 0.89

SCImago Journal Rank (SJR) 2017: 0.323
Source Normalized Impact per Paper (SNIP) 2017: 0.674

Open Access
See all formats and pricing
More options …

Geological modeling of rock type domains in the Balya (Turkey) lead-zinc deposit using plurigaussian simulation

Tayfun Yunsel / Adem Ersoy
Published Online: 2013-03-16 | DOI: https://doi.org/10.2478/s13533-012-0113-z


Mineral resource evaluation requires defining geological rock-type domains. The traditional simulation methods have serious limitations for applications to large numbers of domains, which have complex contact relations. Plurigaussian simulation is an effective method which can be applied, in a simple way, to any number of domains, using both local and global geological information to infer the distributions of rock types. This work not only presents the application of the plurigaussian simulation method to the Balya lead-zinc deposit, but also assesses the spatially varying rock type proportions, and accounts for uncertainties between them. These parameters are extremely important for mining deposits, since the mineralizations of interest generally occur only in certain rock types. Furthermore, being able to model the different geological rock types is vital to good mine operations, production planning, and management. The results indicate that the plurigaussian method correctly reproduces the different orientations of the individual rock types, as seen in drill holes, and the proportion of each rock type, even if this varies in space.

Keywords: Geological modeling; rock type domains; plurigaussian simulation; lead-zinc deposit

  • [1] Emery X., Ortiz J.M., Cáceres A.M., Geostatistical modeling of rock type domains with spatially varying proportions: Application to a porphyry copper deposit, Journal of the South African Institute of Mining and Metallurgy, 2008, 108, 285–292 Google Scholar

  • [2] Lia O., Tjelmeland H., Kjellesvik L.E., Modeling of facies architecture by marked point models. In: Baafi E.Y., Schofield N.A. (Eds.), Geostatistics Wollongong’ 96, Dordrecht, 1997, 386–397 Google Scholar

  • [3] Lantuéjoul C., Geostatistical simulation: Models and algorithms. Springer, Berlin, 2002 Google Scholar

  • [4] Alabert F., Stochastic imaging of spatial distributions using hard and soft information. Stanford University, Department of Applied Earth Sciences, 1987 Google Scholar

  • [5] Deutsch C.V., Journel A.G, GSLIB: Geostatistical Software Library and User’s Guide, Oxford Univer-sity Press, New York, 1998 Google Scholar

  • [6] Seifert D., Jensen J.L., Using sequential indicator simulation as a tool in reservoir description. Issues and Uncertainties, 1999, 31, 527–550 Google Scholar

  • [7] Deutsch C.V., A sequential indicator simulation program for categorical variables with point and block data: BlockSIS. Computers & Geosciences, 2006, 32, 1669–1681 http://dx.doi.org/10.1016/j.cageo.2006.03.005CrossrefGoogle Scholar

  • [8] Le Loc’h G., Galli A., Truncated plurigaussian method: theoretical and practical points of view. In: Baafi E.Y., Schofield N.A. (Eds.), Geostatistics Wollongong’ 96, Dordrecht, 1996, 211–222 Google Scholar

  • [9] De Almeida J.A., Stochastic simulation methods for characterization of lithoclasses in carbonate reservoirs. Earth-Science Reviews, 2010, 101, 250–270 http://dx.doi.org/10.1016/j.earscirev.2010.05.002Web of ScienceCrossrefGoogle Scholar

  • [10] Armstrong M., Galli A., Beucher H., Loc’h G., Renard D., Doligez B., Eschard R., Geffroy F., Plurigaussian Simulations in Geosciences (2nd Edition). Springer, Berlin, 2011 http://dx.doi.org/10.1007/978-3-642-19607-2CrossrefGoogle Scholar

  • [11] Vargas-Guzman J.A., Al-Qassab H., Spatial conditional simulation of facies objects for modeling complex clastic reservoirs. Journal of Petroleum Science and Engineering, 2006, 54, 1–9 http://dx.doi.org/10.1016/j.petrol.2006.06.007CrossrefGoogle Scholar

  • [12] Betzhold J., Roth C., Characterizing the mineralogical variability of a Chilean copper deposit using plurigaussian simulations. Journal of the South African Institute of Mining and Metallurgy, 2000, 100, 111–120 Google Scholar

  • [13] Skvortsova T., Beucher H., Armstrong M., Forkes J., Thwaites A., Andturner R. Simulating the geometry of a granite-hosted uranium orebody. In: Armstrong M., Bettini C., Champigny N., Galli A., Remacre A. (Eds.), Geostatistics Rio 2000, Dordrecht, 2002, 85–99 http://dx.doi.org/10.1007/978-94-017-1701-4_7CrossrefGoogle Scholar

  • [14] Deraisme J., Farrow D., Geostatistical simulation techniques applied to kimberlite orebodies and risk assessment of sampling strategies. In: Leuangthong O., Deutsch C.V. (Eds.), Geostatistics Banff 2004, Springer, 2005, 14, 429–438 http://dx.doi.org/10.1007/978-1-4020-3610-1_43CrossrefGoogle Scholar

  • [15] Kovenko V., Balya lead mines (Turkey). MTA, 4/21, Ankara, 1940 Google Scholar

  • [16] Aygen T., Study of geology of Balya region, M.T.A., 11, Ankara, 1956 (in Turkish) Google Scholar

  • [17] Kaaden G., Ve digerleri, Geological field study in the Çanakkale-Biga-Edremit peninsula region. 2661, M.T.A, Ankara, 1957 (in Turkish) Google Scholar

  • [18] Gjelsvik T., Investigations of lead-zinc deposits in north-west Anatolia, Turkey. MTA Bull., 62–70, Ankara, 1962 (in Turkish) Google Scholar

  • [19] Akyol Z., Balya lead-zinc ore deposit. Geological Engineering. Jeoloji Mühendisligi, 48–58, 1979 (in Turkish) Google Scholar

  • [20] Çagatay A., Geological-minerological study and remarks about origins of western-Anatolian lead-zinc deposits. Türkiye Jeoloji Kurumu Bülteni, 23, 119–132, 1980 (in Turkish) Google Scholar

  • [21] Orgün Y., Gültekin A.H., Önal A., Geology, mineralogy and fluid inclusion data from the Arapucan Pb-Zn-Cu-Ag deposit, Çanakkale, Turkey. Journal of Asian Earth Sciences, 2005, 25, 629–642 http://dx.doi.org/10.1016/j.jseaes.2004.06.006CrossrefGoogle Scholar

  • [22] Oyman T., Geochemistry, mineralogy and gnesis of the Ayazmant (Balkesir), Turkey. Ore Geology Reviews, 2010, 37, 175–201 http://dx.doi.org/10.1016/j.oregeorev.2010.03.002CrossrefGoogle Scholar

  • [23] Emery X., Lantuéjoul C., TBSIM: A computer program for conditional simulation of three-dimensional Gaussian random fields via the turning bands method, International Journal of Coal Geology, 2006, 32, 1615–1628 Google Scholar

  • [24] Ersoy A., Yunsel T.Y., Assessment of Lignite Quality Variables: A Practical Approach with Sequential Gaussian Simulation, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2008, 31, 175–190 http://dx.doi.org/10.1080/15567030701522260CrossrefWeb of ScienceGoogle Scholar

About the article

Published Online: 2013-03-16

Published in Print: 2013-03-01

Citation Information: Open Geosciences, Volume 5, Issue 1, Pages 77–89, ISSN (Online) 2391-5447, DOI: https://doi.org/10.2478/s13533-012-0113-z.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Hassan Talebi, Omid Asghari, and Xavier Emery
Open Geosciences, 2013, Volume 5, Number 4

Comments (0)

Please log in or register to comment.
Log in