Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year

IMPACT FACTOR 2017: 0.696
5-year IMPACT FACTOR: 0.736

CiteScore 2017: 0.89

SCImago Journal Rank (SJR) 2017: 0.323
Source Normalized Impact per Paper (SNIP) 2017: 0.674

Open Access
See all formats and pricing
More options …

Geoheritage values of one of the largest maar craters in the Arabian Peninsula: the Al Wahbah Crater and other volcanoes (Harrat Kishb, Saudi Arabia)

Mohammed Moufti / Károly Németh
  • Faculty of Earth Sciences, King Abdulaziz University, P.O. Box 80200, Jeddah, 21589, Saudi Arabia
  • Institute of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, New Zealand
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nabil El-Masry / Atef Qaddah
Published Online: 2013-06-29 | DOI: https://doi.org/10.2478/s13533-012-0125-8


Al Wahbah Crater is one of the largest and deepest Quaternary maar craters in the Arabian Peninsula. It is NW-SE-elongated, ∼2.3 km wide, ∼250 m deep and surrounded by an irregular near-perpendicular crater wall cut deeply into the Proterozoic diorite basement. Very few scientific studies have been conducted on this unique site, especially in respect to understanding the associated volcanic eruption processes. Al Wahbah and adjacent large explosion craters are currently a research subject in an international project, Volcanic Risk in Saudi Arabia (VORiSA). The focus of VORiSA is to characterise the volcanic hazards and eruption mechanisms of the vast volcanic fields in Western Saudi Arabia, while also defining the unique volcanic features of this region for use in future geoconservation, geoeducation and geotourism projects. Al Wahbah is inferred to be a maar crater that formed due to an explosive interaction of magma and water. The crater is surrounded by a tephra ring that consists predominantly of base surge deposits accumulated over a pre-maar scoria cone and underlying multiple lava flow units. The tephra ring acted as an obstacle against younger lava flows that were diverted along the margin of the tephra ring creating unique lava flow surface textures that recorded inflation and deflation processes along the margin of the post-maar lava flow. Al Wahbah is a unique geological feature that is not only a dramatic landform but also a site that can promote our understanding of complex phreatomagmatic monogenetic volcanism. The complex geological features perfectly preserved at Al Wahbah makes this site as an excellent geotope and a potential centre of geoeducation programs that could lead to the establishment of a geopark in the broader area at the Kishb Volcanic Field.

Keywords: maar, tuff ring; phreatomagmatic; crater; scoria; pahoehoe; tumuli; geopark; geosite

  • [1] Armiero V., Petrosino P., Lirer L. and Alberico I., The GeoCaF Project: Proposal of a Geosites Network at Campi Flegrei (Southern Italy), Geoheritage, 2011, 3, 195–219 http://dx.doi.org/10.1007/s12371-011-0033-1CrossrefGoogle Scholar

  • [2] Bitschene P. and Schueller A., Geo-education and geopark implementation in the Vulkaneifel European Geopark, GSA Field Guide, 2011, 22, 29–34 Google Scholar

  • [3] Erfurt-Cooper P., Geotourism in Volcanic and Geothermal Environments: Playing with Fire? Geoheritage, 2011, 3, 187–193 http://dx.doi.org/10.1007/s12371-010-0025-6CrossrefGoogle Scholar

  • [4] Joyce E., Australia’s Geoheritage: History of Study, A New Inventory of Geosites and Applications to Geotourism and Geoparks, Geoheritage, 2010, 2, 39–56 http://dx.doi.org/10.1007/s12371-010-0011-zCrossrefGoogle Scholar

  • [5] Ghazi J., Ólafsdóttir R., Tongkul F. and Ghazi J., Geological Features for Geotourism in the Western Part of Sahand Volcano, NW Iran, Geoheritage, 2013, 5, 23–34 http://dx.doi.org/10.1007/s12371-012-0071-3CrossrefGoogle Scholar

  • [6] Eder W., “UNESCO GEOPARKS” — A new initiative for protection and sustainable development of the Earth’s heritage, Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 1999, 214, 353–358 Google Scholar

  • [7] Joyce E., McKnight J. and Anonymous, Volcanic geomorphosites, geoparks and geotourism; the Australian experience. Programme with Abstracts — International Geomorphology Conference, 2009, 7, 0-Abstract no. 726 Google Scholar

  • [8] Keever P. J. M. and Zouros N., Geoparks: Celebrating Earth heritage, sustaining local communities, Episodes, 2005, 28, 274–278 Google Scholar

  • [9] Kharbouch F., Bouab B., Malaki A., Zahraoui M., El Wartiti M. and Anonymous, The volcanic geopark of Ifrane and Azrou; a natural museum. International Geological Congress, Abstracts = Congres Geologique International, Resumes, 2008, 33, 0-Abstract 1436742 Google Scholar

  • [10] Henriques M. H., dos Reis R. P., Brilha J. and Mota T., Geoconservation as an Emerging Geoscience, Geoheritage, 2011, 1–12 Google Scholar

  • [11] Erikstad L., Geoheritage and geodiversity management — the questions for tomorrow, Proceedings of the Geologists Association, 2013, [in press], http://dx.doi.org/10.1016/j.pgeola.2013.07.003 CrossrefGoogle Scholar

  • [12] Camp V. E., Roobol M. J. and Hooper P. R., The Arabian continental alkali basalt province; Part III, Evolution of Harrat Kishb, Kingdom of Saudi Arabia; with Suppl. Data 92-11, Geological Society of America Bulletin, 1992, 104, 379–396 http://dx.doi.org/10.1130/0016-7606(1992)104<0379:TACABP>2.3.CO;2Google Scholar

  • [13] Grainger D. J., Al Wahbah volcanic explosion crater, Saudi Arabia, Geology Today, 1996, January–February, 27–30 CrossrefGoogle Scholar

  • [14] Moufti R. M., Németh K., Murcia H., Lindsay J. and El-Masry N., Geosite of a steep lava spatter cone of the 1256 AD, Al Madinah eruption, Kingdom of Saudi Arabia, Central European Journal of Geosciences, 2013, [in press] Google Scholar

  • [15] Moufti M. R. and Hashad M. H., Volcanic hazards assessment of Saudi Arabian Harrats: geochemical and isotopic studies of selected areas of active Makkah-Madinah-Nafud (MMN) volcanic rocks. Final project Report (LGP-5-27) 679 submitted to King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia, 2005, 1–401 Google Scholar

  • [16] Camp V. E. and Roobol M. J., The Arabian continental alkali basalt province; Part I, Evolution of Harrat Rahat, Kingdom of Saudi Arabia; with Suppl. Data 89-04, Geological Society of America Bulletin, 1989, 101, 71–95 http://dx.doi.org/10.1130/0016-7606(1989)101<0071:TACABP>2.3.CO;2CrossrefGoogle Scholar

  • [17] Camp V. E., Hooper P. R., Roobol M. J. and White D. L., The Madinah eruption, Saudi Arabia: Magma mixing and simultaneous extrusion of three basaltic chemical types, Bulletin of Volcanology, 1987, 49, 489–508 http://dx.doi.org/10.1007/BF01245475CrossrefGoogle Scholar

  • [18] Moufti M. R. and Németh K., The intra-continental Harrat Al Madinah Volcanic Field, Western Saudi Arabia: a proposal to establish Harrat Al Madinah as the first volcanic geopark in the Kingdom of Saudi Arabia, Geoheritage, 2013, [in press] Google Scholar

  • [19] Moufti M. R. H., Khalil K. I. and Saad N. A., Petrogenesis of ultramafic xenoliths from Harrat Kishb, Saudi Arabia; a mineralogical study, Bulletin of the Faculty of Science. F, Geology, 2002, 31, 51–68 Google Scholar

  • [20] Blusztajn J., Hart S. R., Shimizu N. and McGuire A. V., Trace-Element and Isotopic Characteristics of Spinel Peridotite Xenoliths from Saudi-Arabia, Chemical Geology, 1995, 123, 53–65 http://dx.doi.org/10.1016/0009-2541(95)00044-MCrossrefGoogle Scholar

  • [21] McGuire A. V., Petrology of mantle xenoliths from Harrat al Kishb; the mantle beneath western Saudi Arabia, Journal of Petrology, 1988, 29, 73–92 http://dx.doi.org/10.1093/petrology/29.1.73CrossrefGoogle Scholar

  • [22] Vaughan A. W., Mantle xenoliths from Harrat al Kishb, western Saudi Arabia, Eos, Transactions, American Geophysical Union, 1985, 66, 1114–1114 Google Scholar

  • [23] Chagarlamudi P. and Moufti M. R., The utility of Landsat images in delineating volcanic cones in Harrat Kishb, Kingdom of Saudi Arabia, International Journal of Remote Sensing, 1991, 12, 1547–1557 http://dx.doi.org/10.1080/01431169108955188CrossrefGoogle Scholar

  • [24] Kereszturi G. and Németh K., Monogenetic basaltic volcanoes: genetic classification, growth, geomorphology and degradation. In: Updates in Volcanology — New Advances in Understanding Volcanic Systems, Németh K. (Eds) 2012, inTech Open, Rijeka, Croatia, 3–88, http://dx.doi.org/10.5772/51387 CrossrefGoogle Scholar

  • [25] Kereszturi G., Jordan G., Németh K. and Doniz-Paez J. F., Syn-eruptive morphometric variability of monogenetic scoria cones, Bulletin of Volcanology, 2012, 74, 2171–2185 http://dx.doi.org/10.1007/s00445-012-0658-1CrossrefGoogle Scholar

  • [26] Németh K., Risso C., Nullo F. and Kereszturi G., The role of collapsing and cone rafting on eruption style changes and final cone morphology: Los Morados scoria cone, Mendoza, Argentina, Central European Journal of Geosciences, 2011, 3, 102–118 http://dx.doi.org/10.2478/s13533-011-0008-4CrossrefGoogle Scholar

  • [27] Duraiswami R. A., Bondre N. R. and Managave S., Morphology of rubbly pahoehoe (simple) flows from the Deccan Volcanic Province: Implications for style of emplacement. Journal of Volcanology and Geothermal Research, 2008, 177, pp. 822–836 http://dx.doi.org/10.1016/j.jvolgeores.2008.01.048CrossrefGoogle Scholar

  • [28] Stevenson J. A., Mitchell N. C., Cassidy M. and Pinkerton H., Widespread inflation and drainage of a pahoehoe flow field: the Nesjahraun, Aingvellir, Iceland, Bulletin of Volcanology, 2012, 74, 15–31 http://dx.doi.org/10.1007/s00445-011-0482-zCrossrefGoogle Scholar

  • [29] Rossi M. J., Morphology of the 1984 open-channel lava flow at Krafla volcano, northern Iceland, Geomorphology, 1997, 20, 95–112 http://dx.doi.org/10.1016/S0169-555X(97)00007-XCrossrefGoogle Scholar

  • [30] Anderson S. W., Smrekar S. E. and Stofan E. R., Tumulus development on lava flows: insights from observations of active tumuli and analysis of formation models, Bulletin of Volcanology, 2012, 74, 931–946 http://dx.doi.org/10.1007/s00445-012-0576-2CrossrefGoogle Scholar

  • [31] Németh K., Haller M. J., Martin U., Risso C. and Massaferro G., Morphology of lava tumuli from Mendoza (Argentina), Patagonia (Argentina), and Al-Haruj (Libya), Zeitschrift Fur Geomorphologie, 2008, 52, 181–194 http://dx.doi.org/10.1127/0372-8854/2008/0052-0181CrossrefGoogle Scholar

  • [32] Pint J. J. and Nicod J., Vulcanospeleology in Saudi Arabia, Acta Carsologica, 2006, 35, 107–119 http://dx.doi.org/10.3986/ac.v35i1.247CrossrefGoogle Scholar

  • [33] Pint J., Pint S. and Anonymous, The lava tubes of Harrat Kishb, Saudi Arabia, Journal of Cave and Karst Studies, 2005, 67, 194–194 Google Scholar

  • [34] Roobol M. J., Pint J. J., Al-Shanti M. A., Al-Juaid A. J., Al-Amoudi S. A., Pint S., Al-Eisa A. M., Allam F., Al-Sulaimani G. S. and Banakhar A. S., Preliminary survey for lava-tube caves on Harrat Kishb, Kingdom of Saudi Arabia, Open-File Report — Saudi Geological Survey, 2002, 35–35 Google Scholar

  • [35] Giusti C. and Calvet M., The inventory of French geomorphosites and the problem of nested scales and landscape complexity. Geomorphologie-Relief Processus Environnement, 2010, 223–244 CrossrefGoogle Scholar

  • [36] Vespermann D. and Schmincke H. -U., Scoria cones and tuff rings. In: Encyclopedia of Volcanoes, Sigurdsson H., Houghton B. F., McNutt S. R., Rymer H. and Stix J. (Eds) 2000, Academic Press, San Diego, 683–694 Google Scholar

  • [37] Vergniolle S. and Manga M., Hawaiian and strombolian eruptions. In: Encyclopedia of Volcanoes, Sigurdsson H., Houghton B. F., McNutt S. R., Rymer H. and Stix J. (Eds) 2000, Academic Press, San Diego, 447–461 Google Scholar

  • [38] Abdel Wahab A., Abul Maaty M. A., Stuart F. M., Awad H. and Kafafy A., The geology and geochronology of Al Wahbah maar crater, Harrat Kishb, Saudi Arabia, Quaternary Geochronology, 2013, DOI: http://dx.doi.org/10.1016/j.quageo.2013.01.008 [in press] CrossrefGoogle Scholar

  • [39] Heiken G. H. and Wohletz K. H., Volcanic Ash. 1986, University of California Press, Berkeley, 246 Google Scholar

  • [40] Pardo N., Macias J. L., Giordano G., Cianfarra P., Avellan D. R. and Bellatreccia F., The approximately 1245 yr BP Asososca maar eruption; the youngest event along the Nejapa-Miraflores volcanic fault, western Managua, Nicaragua, Journal of Volcanology and Geothermal Research, 2009, 184, 292–312 http://dx.doi.org/10.1016/j.jvolgeores.2009.04.006Google Scholar

  • [41] Németh K., Volcanic glass textures, shape characteristics and compositions of phreatomagmatic rock units from the Western Hungarian monogenetic volcanic fields and their implications for magma fragmentation, Central European Journal of Geosciences, 2010, 2, 399–419 http://dx.doi.org/10.2478/v10085-010-0015-6CrossrefGoogle Scholar

  • [42] Buttner R., Dellino P., La Volpe L., Lorenz V. and Zimanowski B., Thermohydraulic explosions in phreatomagmatic eruptions as evidenced by the comparison between pyroclasts and products from Molten Fuel Coolant Interaction experiments, Journal of Geophysical Research-Solid Earth, 2002, 107, pp. art. no.-2277 Google Scholar

  • [43] Mattsson H. B. and Tripoli B. A., Depositional characteristics and volcanic landforms in the Lake Natron-Engaruka monogenetic field, northern Tanzania, Journal of Volcanology and Geothermal Research, 2011, 203, 23–34 http://dx.doi.org/10.1016/j.jvolgeores.2011.04.010CrossrefGoogle Scholar

  • [44] Stoppa F., The San Venanzo maar and tuff ring, Umbria, Italy: Eruptive behaviour of a carbonatitemelilitite volcano. Bulletin of Volcanology, 1996, 57, 563–577 Google Scholar

  • [45] Dellino P., De Astis G., La Volpe L., Mele D. and Sulpizio R., Quantitative hazard assessment of phreatomagmatic eruptions at Vulcano (Aeolian Islands, Southern Italy) as obtained by combining stratigraphy, event statistics and physical modelling, Journal of Volcanology and Geothermal Research, 2011, 201, 364–384 http://dx.doi.org/10.1016/j.jvolgeores.2010.06.009CrossrefGoogle Scholar

  • [46] Vazquez J. A. and Ort M. H., Facies variation of eruption units produced by the passage of single pyroclastic surge currents, Hopi Buttes volcanic field, USA, Journal Of Volcanology And Geothermal Research, 2006, 154, 222–236 http://dx.doi.org/10.1016/j.jvolgeores.2006.01.003CrossrefGoogle Scholar

  • [47] Valentine G. A. and Fisher R. V., Pyroclastic surges and blasts. In: Encyclopedia of Volcanoes, Sigurdsson H., Houghton B. F., McNutt S. R., Rymer H. and Stix J. (Eds) 2000, Academic Press, San Diego, 571–580 Google Scholar

  • [48] Lorenz V., On the growth of maars and diatremes and its relevance to the formation of tuff rings, Bulletin of Volcanology, 1986, 48, 265–274 http://dx.doi.org/10.1007/BF01081755CrossrefGoogle Scholar

  • [49] Gutmann J. T., Strombolian and effusive activity as precursors to phreatomagmatism: eruptive sequence at maars of the Pinacate volcanic field, Sonora, Mexico, Journal of Volcanology and Geothermal Research, 2002, 113, 345–356 http://dx.doi.org/10.1016/S0377-0273(01)00265-7CrossrefGoogle Scholar

  • [50] Stoppa F., Rosatelli G., Schiazza M. and Tranquilli A., Hydrovolcanic vs magmatic processes in forming maars and associated pyroclasts: the Calatrava — Spain — case history. In: Updates in Volcanology, Stoppa F. (Eds) 2012, INTECH, Rijeka, Croatia, 3–26 Google Scholar

  • [51] Camp V. E., Roobol M. J. and Hooper P. R., The Arabian Continental Alkali Basalt Province. 3. Evolution of Harrat Kishb, Kingdom of Saudi-Arabia, Geological Society of America Bulletin, 1992, 104, 379–396 http://dx.doi.org/10.1130/0016-7606(1992)104<0379:TACABP>2.3.CO;2Google Scholar

  • [52] Vujičić M., Vasiljević D. A., Markovć S. B., Hose T. A., Lukić T., Hadžć O. and Janićević S., Preliminary geosite assessment model (GAM) and its application on Fruška Gora Mountain, potential geotourism destination of Serbia, Acta Geographica Slovenica-Geografski Zbornik, 2011, 51, 361–377 http://dx.doi.org/10.3986/AGS51303CrossrefGoogle Scholar

  • [53] Petrovic M. D., Vasiljevic D. A., Vujicic M. D., Hose T. A., Markovic S. B. and Lukic T., Global geopark and candidate — Comparative analysis of Papuk Mountain Geopark (Croatia) and Fruska Gora Mountain (Serbia) by using GAM model. Carpathian Journal of Earth and Environmental Sciences, 2013, 8, 105–116 Google Scholar

About the article

Published Online: 2013-06-29

Published in Print: 2013-06-01

Citation Information: Open Geosciences, Volume 5, Issue 2, Pages 254–271, ISSN (Online) 2391-5447, DOI: https://doi.org/10.2478/s13533-012-0125-8.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Mohamed Al-Abbas Daoudi, Mahmoud Ibrahim Al-Doaan, and Abdlhamed Jamil
Arabian Journal of Geosciences, 2018, Volume 11, Number 12

Comments (0)

Please log in or register to comment.
Log in