Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

IMPACT FACTOR 2018: 0.788
5-year IMPACT FACTOR: 0.899

CiteScore 2018: 1.02

SCImago Journal Rank (SJR) 2018: 0.295
Source Normalized Impact per Paper (SNIP) 2018: 0.612

Open Access
See all formats and pricing
More options …

High resolution aerosol data from MODIS satellite for urban air quality studies

A. Chudnovsky
  • Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
  • Department of Geography and Human Environment, Tel-Aviv University, Tel-Aviv, Israel
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. Lyapustin / Y. Wang / C. Tang / J. Schwartz / P. Koutrakis
Published Online: 2014-05-29 | DOI: https://doi.org/10.2478/s13533-012-0145-4


The Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global coverage, but the 10 km resolution of its aerosol optical depth (AOD) product is not suitable for studying spatial variability of aerosols in urban areas. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for MODIS which provides AOD at 1 km resolution. Using MAIAC data, the relationship between MAIAC AOD and PM2.5 as measured by the 27 EPA ground monitoring stations was investigated. These results were also compared to conventional MODIS 10 km AOD retrievals (MOD04) for the same days and locations. The coefficients of determination for MOD04 and for MAIAC are R2 =0.45 and 0.50 respectively, suggested that AOD is a reasonably good proxy for PM2.5 ground concentrations. Finally, we studied the relationship between PM2.5 and AOD at the intra-urban scale (≤10 km) in Boston. The fine resolution results indicated spatial variability in particle concentration at a sub-10 kilometer scale. A local analysis for the Boston area showed that the AOD-PM2.5 relationship does not depend on relative humidity and air temperatures below ~7 °C. The correlation improves for temperatures above 7–16 °C. We found no dependence on the boundary layer height except when the former was in the range 250–500 m. Finally, we apply a mixed effects model approach to MAIAC aerosol optical depth (AOD) retrievals from MODIS to predict PM2.5 concentrations within the greater Boston area. With this approach we can control for the inherent day-to-day variability in the AOD-PM2.5 relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles and ground surface reflectance. Our results show that the model-predicted PM2.5 mass concentrations are highly correlated with the actual observations (out-of-sample R2 of 0.86). Therefore, adjustment for the daily variability in the AOD-PM2.5 relationship provides a means for obtaining spatially-resolved PM2.5 concentrations.

Keywords: Remote Sensing; PM2.5 exposure assessment; urban air quality; Aerosol Optical Depth; MODIS; MAIAC; mixed effects model

  • [1] Monks P., A. Baklanov, Simpson D., Fuzzi S., Stohl A., Williams M.L., Akimoto H., M. Amann et al., Atmospheric composition change — global and regional air quality, Atmos. Environ. 2009, 43, 5268–5350 http://dx.doi.org/10.1016/j.atmosenv.2009.08.021CrossrefGoogle Scholar

  • [2] Miller K., Siscovick D., Sheppard L., Shepherd K., Sullivan J., Anderson G., Kaufman J., Long-term exposure to air pollution and incidence of cardiovascular events in women. New England Journal of Medicine 356, 447–458. (2007). http://dx.doi.org/10.1056/NEJMoa054409Web of ScienceCrossrefGoogle Scholar

  • [3] Lepeule J., Laden F, Dockery D, Schwartz J. Chronic exposure to fine particles and mortality: an extended follow-up of the Harvard six cities study from 1974 to 2009. Environmental Health Perspectives 2012, 120, 965–970 http://dx.doi.org/10.1289/ehp.1104660Web of ScienceGoogle Scholar

  • [4] Pope III C.A., Burnett R.T., Thun M.J., Calle E.E., Krewski D., Ito K., Thurston G.D., Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate pollution. JAMA: the Journal of the American Medical Association, 2002, 287, 1132–41 http://dx.doi.org/10.1001/jama.287.9.1132CrossrefGoogle Scholar

  • [5] Zhu Y, Skuhn, Mayo P, Hinds W., Comparison of Daytime and Nighttime Concentration Profiles and Size Distributions of Ultrafine Particles near a Major Highway. Environmental Science and Technology, 2006, 40, 2531–2536 http://dx.doi.org/10.1021/es0516514CrossrefGoogle Scholar

  • [6] Bell M., Ebisu K., Peng R., Community-level spatial heterogeneity of chemical constituent levels of fine particulates and implications for epidemiological research. J. Exposure Science and Environ. Epidemiol., 2010, 24, 1–13, doi:10.1038/jes.2010.24 Web of ScienceCrossrefGoogle Scholar

  • [7] Hoff R., Christopher S., Remote Sensing of Particulate Pollution from Space: Have We Reached the Promised Land? J. Air Waste Manage Assoc., 2009, 59, 645–675 http://dx.doi.org/10.3155/1047-3289.59.8.980CrossrefGoogle Scholar

  • [8] Lyapustin A., Wang Y., Laszlo I., Kahn R., Korkin S., Remer L., Levy R., Reid J.S., Multi-Angle Implementation of Atmospheric Correction (MAIAC): Part 2. Aerosol Algorithm, J. Geophys. Res., 2011, 116, D03211, doi:10.1029/2010JD014986 CrossrefGoogle Scholar

  • [9] Levy R.C., Remer L.A., Mattoo S., Vermote E.F., Kaufman Y.J., Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J. Geophys. Res., 2007, 112, D13 Web of ScienceGoogle Scholar

  • [10] Holben B.N., Coauthors, 1998: AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 1998, 66, 1–16 http://dx.doi.org/10.1016/S0034-4257(98)00031-5CrossrefGoogle Scholar

  • [11] Lyapustin A, Wang Y, Frey R. An Automatic Cloud Mask Algorithm Based on Time Series of MODIS Measurements. J. Geophys. Res., 2008, 113, D16207, doi:10.1029/2007JD009641 http://dx.doi.org/10.1029/2007JD009641Web of ScienceCrossrefGoogle Scholar

  • [12] Remer L.A., Kaufman Y.J., Tanre D., Mattoo S., Chu D.A., Martins J.V., Li R.R., Ichoku C., Levy R.C., Kleidman R.G., Eck T.F., Vermote E., Holben B.N.: The MODIS aerosol algorithm, products, and validation, J. Atmos. Sci., 2005, 62, 947–973 http://dx.doi.org/10.1175/JAS3385.1CrossrefGoogle Scholar

  • [13] Lee H.J., Liu Y., Coull B.A., Schwartz J., Koutrakis P., A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations. Atmos. Chem. Phys., 2011, 11, 7991–8002 http://dx.doi.org/10.5194/acp-11-7991-2011Web of ScienceCrossrefGoogle Scholar

  • [14] Chudnovsky A., Hyung J.L., Kostinski A., Kotlov T., Koutrakis P., Prediction of daily fine particulate matter concentrations using aerosol optical depth retrievals from the Geostationary Operational Environmental Satellite. Journal of the Air & Waste Management Association, 2012, 62, 1022–1031, DOI: 10.1080/10962247.2012.695321 http://dx.doi.org/10.1080/10962247.2012.695321Web of ScienceCrossrefGoogle Scholar

  • [15] Lindstrom M.L., Bates D.M., Newton-Raphson and EM algorithms for linear mixed-effects models for repeated-measures data. JASA Journal of the Acoustical Society of America 1998, 83, 1014–1021 Google Scholar

  • [16] Zhang H., Hoff R.M., Engel-Cox J.A., The Relation between MODIS Aerosol Optical Depth and PM2.5 over the United States: a Geographical Comparison by EPA Regions. J. Air & Waste Manage. Assoc., 2009, 59, 1358–1369 http://dx.doi.org/10.3155/1047-3289.59.11.1358Web of ScienceCrossrefGoogle Scholar

  • [17] Gupta P., Christopher S.A., Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: 2. A neural network approach. J. Geophys. Res., 2009, 114, D20205, doi:10.1029/2008JD011497 http://dx.doi.org/10.1029/2008JD011497CrossrefWeb of ScienceGoogle Scholar

  • [18] Kumar N., Foster A., Chu A., Peters T., Willis R., Satellite Remote Sensing for Developing Time-Space Resolved Estimates of Ambient Particulate in Cleveland, OH. Aeros. Sci. Technol., 2011, 45, 1090–1108, DOI: 10.1080/02786826.2011.581256 http://dx.doi.org/10.1080/02786826.2011.581256CrossrefGoogle Scholar

  • [19] Chudnovsky A., Kostinski A., Lyapustin A., Koutrakis P., Spatial scales of pollution from variable resolution satellite imaging. Environ. Pollut., 2013, 172, 131–138 http://dx.doi.org/10.1016/j.envpol.2012.08.016CrossrefWeb of ScienceGoogle Scholar

  • [20] Emili E., Lyapustin A., Wang Y., Popp C., Korkin S., Zebisch M., High spatial resolution aerosol retrieval with MAIAC: Application to mountain regions. J. Geophys. Res., 2011, 116, D23211 Web of ScienceGoogle Scholar

About the article

Published Online: 2014-05-29

Published in Print: 2014-03-01

Citation Information: Open Geosciences, Volume 6, Issue 1, Pages 17–26, ISSN (Online) 2391-5447, DOI: https://doi.org/10.2478/s13533-012-0145-4.

Export Citation

© 2014 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Weihong Han, Ling Tong, Yunping Chen, Runkui Li, Beizhan Yan, and Xue Liu
Applied Sciences, 2018, Volume 8, Number 12, Page 2624
Roland Stirnberg, Jan Cermak, and Hendrik Andersen
Remote Sensing, 2018, Volume 10, Number 9, Page 1353
Siwei Li, Everette Joseph, Qilong Min, Bangsheng Yin, Ricardo Sakai, and Megan K. Payne
Atmospheric Measurement Techniques, 2017, Volume 10, Number 6, Page 2093
Marguerite Nyhan, Sebastian Grauwin, Rex Britter, Bruce Misstear, Aonghus McNabola, Francine Laden, Steven R. H. Barrett, and Carlo Ratti
Environmental Science & Technology, 2016, Volume 50, Number 17, Page 9671

Comments (0)

Please log in or register to comment.
Log in