Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year


IMPACT FACTOR 2016 (Open Geosciences): 0.475

CiteScore 2016: 0.87

SCImago Journal Rank (SJR) 2016: 0.346
Source Normalized Impact per Paper (SNIP) 2016: 0.690

Open Access
Online
ISSN
2391-5447
See all formats and pricing
More options …

Influence of the spatial resolution of satellite-derived vegetation parameters on the biogenic Volatile Organic Compounds (VOC) emission modeling

Carlos Silveira / Oxana Tchepel
  • Faculty of Sciences and Technology, University of Coimbra, Rua Luis Reis Santos, Polo II, 3070-788, Coimbra, Portugal
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-05-29 | DOI: https://doi.org/10.2478/s13533-012-0166-z

Abstract

Vegetation is a natural source of Volatile Organic Compounds (VOC) that plays an important role in atmospheric chemistry. The main objective of the current study is to implement a model to quantify process-based VOC emissions from plants that focuses on the relationship between the sensitivity of VOC emission estimates to spatial resolution data, based on scientific knowledge and vegetation dynamics derived from satellite observations. The Normalized Difference Vegetation Index (NDVI) and Leaf Area Index (LAI) were elected to examine this issue using different resolutions of satellite-derived products: 22m from the DEIMOS-1 satellite, and 250m and 1000m provided by MODIS. The study is focused on an area of 80×80km2 in Portugal for 2011. Detailed land cover and meteorological data are also included in the emission quantification algorithm. The primary outcomes were determined using a multi-scale analysis showing spatial and temporal variations in the vegetation parameters and modeling results. The results confirm that the emissions model is highly sensitive to the spatial resolution of the satellite-derived data, resulting in about a 30% difference in total isoprene emissions for the study area.

Keywords: NDVI; LAI; Biogenic emissions; Volatile Organic Compounds; Spatial resolution

  • [1] Griffin R.J., Cocker D.R., Seinfeld J.H., Dabdub D., Estimate of global atmospheric organic aerosol from oxidation of biogenic hydrocarbons. Geophys. Res. Lett., 1999, 26, 2721–2724, DOI: 10.1029/1999GL900476 http://dx.doi.org/10.1029/1999GL900476CrossrefGoogle Scholar

  • [2] Kanakidou M., Seinfeld J.H., Pandis S.N., Barnes I., Dentener F.J., Facchini M.C., et al., Organic aerosol and global climate modelling: a review. Atmos. Chem. Phys., 2005, 5, 1053–1123, DOI: 10.5194/acp-5-1053-2005 http://dx.doi.org/10.5194/acp-5-1053-2005CrossrefGoogle Scholar

  • [3] Curci G., Beekmann M., Vautard R., Smiatek G., Steinbrecher R., Theloke J., et al., Modelling study of the impact of isoprene and terpene biogenic emissions on European ozone levels. Atmos. Environ., 2009, 43(7), 1444–1455, DOI: 10.1016/j.atmosenv.2008.02.070 http://dx.doi.org/10.1016/j.atmosenv.2008.02.070CrossrefGoogle Scholar

  • [4] Guenther A., Hewitt C.N., Erickson D., Fall R., Geron C., Graedel T., et al., A global model of natural volatile organic compound emissions. J. Geophys. Res-Atmos., 1995, 100(D5), 8873–8892, DOI: 10.1029/94JD02950 http://dx.doi.org/10.1029/94JD02950CrossrefGoogle Scholar

  • [5] Pacifico F., Harrison S.P., Jones C.D., Sitch S., Isoprene emissions and climate (review). Atmos. Environ., 2009, 43, 6121–6135, DOI: 10.1016/j.atmosenv.2009.09.002 http://dx.doi.org/10.1016/j.atmosenv.2009.09.002CrossrefGoogle Scholar

  • [6] [6]Arneth A., Niinemets Ü, Pressley S., Bäck J., Hari P., Karl T., et al., Process-based estimates of terrestrial ecosystem isoprene emissions: incorporating the effects of a direct CO2-isoprene interaction. Atmos. Chem. Phys., 2007, 7, 31–53, DOI: 10.5194/acp-7-31-2007 http://dx.doi.org/10.5194/acp-7-31-2007CrossrefWeb of ScienceGoogle Scholar

  • [7] Wilkinson M.J., Monson R.K., Trahan N., Lee S., Brown E., Jackson R.B., et al., Leaf isoprene emission rate as a function of atmospheric CO2 concentration. Glob. Change Biol., 2009, 15, 1189–1200, DOI: 10.1111/j.1365-2486.2008.01803.x http://dx.doi.org/10.1111/j.1365-2486.2008.01803.xWeb of ScienceCrossrefGoogle Scholar

  • [8] Niinemets Ü, Tenhunen J.D., Harley P.C., Steinbrecher R., A model of isoprene emission based on energetic requirements for isoprene synthesis and leaf photosynthetic properties for Liquidambar and Quercus. Plant Cell Environ., 1999, 22, 1319–1335, DOI: 10.1046/j.1365-3040.1999.00505.x http://dx.doi.org/10.1046/j.1365-3040.1999.00505.xCrossrefGoogle Scholar

  • [9] Guenther A., Karl T., Harley P., Wiedinmyer C., Palmer P.I., Geron C., Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys., 2006, 6, 3181–3210, DOI: 10.5194/acp-6-3181-2006 http://dx.doi.org/10.5194/acp-6-3181-2006CrossrefGoogle Scholar

  • [10] Palmer P.I., Jacob D.J., Fiore A.M., Martin R.V., Chance K., Kurosu T.P., Mapping isoprene emissions over North America using formaldehyde column observations from space. J. Geophys. Res-Atmos., 2003, 108(D6), 27, DOI: 10.1029/2002JD002153 http://dx.doi.org/10.1029/2002JD002153CrossrefGoogle Scholar

  • [11] Abbot D.S., Palmer P.I., Martin R.V., Chance K.V., Jacob D.J., Guenther A., Seasonal and interannual variability of North American isoprene emissions as determined by formaldehyde column measurements from space. Geophys. Res. Lett., 2003, 30(17), 4 pp, DOI: 10.1029/2003GL017336 CrossrefGoogle Scholar

  • [12] Cheng Y., Gamon J.A., Fuentes D.A., Mao Z., Sims D.A., Qiu H., et al., A multi-scale analysis of dynamic optical signals in a Southern California chaparral ecosystem: A comparison of field, AVIRIS and MODIS data. Remote Sens. Environ., 2006, 103, 369–378, DOI: 10.1016/j.rse.2005.06.013 http://dx.doi.org/10.1016/j.rse.2005.06.013CrossrefGoogle Scholar

  • [13] Tarnavsky E., Garrigues S., Brown M.E., Multiscale geostatistical analysis of AVHRR, SPOTVGT, and MODIS global NDVI products. Remote Sens. Environ., 2008, 112(2), 535–549, DOI: 10.1016/j.rse.2007.05.008 http://dx.doi.org/10.1016/j.rse.2007.05.008CrossrefGoogle Scholar

  • [14] Tian Y., Woodcock C.E., Wang Y., Privette J.L., Shabanov N.V., Zhou L., et al., Multiscale analysis and validation of the MODIS LAI product. I. Uncertainty assessment. Remote Sens. Environ., 2002, 83, 414–430, DOI: 10.1016/S0034-4257(02)00047-0 http://dx.doi.org/10.1016/S0034-4257(02)00047-0CrossrefGoogle Scholar

  • [15] Garrigues S., Lacaze R., Baret F., Morisette J.T., Weiss M., Nickeson J.E., et al., Validation and intercomparison of global Leaf Area Index products derived from remote sensing data. J. Geophys. Res-Biogeo., 2008, 113(G2), 20 pp., DOI: 10.1029/2007JG000635 CrossrefWeb of ScienceGoogle Scholar

  • [16] Kim J., Guo Q., Baldocchi D.D., Leclerc M.Y., Xu L., Schmid H.P., Upscaling fluxes from tower to landscape: Overlaying flux footprints on highresolution (IKONOS) images of vegetation cover. Agr. Forest Meteorol., 2006, 136, 132–146, DOI: 10.1016/j.agrformet.2004.11.015 http://dx.doi.org/10.1016/j.agrformet.2004.11.015CrossrefGoogle Scholar

  • [17] Knyazikhin Y., Glassy J., Privette J.L., Tian Y., Lotsch A., Zhang Y., et al., MODIS Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation Absorbed by Vegetation (FPAR) Product. (MOD15). Algorithm Theoretical Basis Document, 1999, 126 pp. Google Scholar

  • [18] Simpson D., Guenther A., Hewitt C.N., Steinbrecher R., Biogenic emissions in Europe: 1. Estimates and uncertainties. J. Geophys. Res-Atmos., 1995, 100(D11), 22875–22890, DOI: 10.1029/95JD02368 http://dx.doi.org/10.1029/95JD02368CrossrefGoogle Scholar

  • [19] Oderbolz D.C., Aksoyoglu S., Keller J., Barmpadimos I., Steinbrecher R., Skj?th C.A., et al., A comprehensive emission inventory of biogenic volatile organic compounds in Europe: improved seasonality and land-cover. Atmos. Chem. Phys., 2013, 13, 1689–1712, DOI: 10.5194/acp-13-1689-2013 http://dx.doi.org/10.5194/acp-13-1689-2013Web of ScienceCrossrefGoogle Scholar

  • [20] Skamarock W.C., Klemp J.B., Dudhia J., Gill D.O., Barker D.M., Duda M., Huang X-Y., Wang W., Powers J.G., A Description of the Advanced Research WRF Version 3. NCAR Technical Note, 2008, 113 pp., DOI: 10.5065/D68S4MVH CrossrefGoogle Scholar

  • [21] Kogan F., Global Drought Watch from Space. B. Am. Meteorol. Soc., 1997, 78(4), 621–636, DOI: 10.1175/1520-0477(1997)078¡0621:GDWFS¿2.0.CO;2 http://dx.doi.org/10.1175/1520-0477(1997)078<0621:GDWFS>2.0.CO;2CrossrefGoogle Scholar

  • [22] Aardenne J.v., Pulles, T., Uncertainty in emission inventories: What do we mean and how could we assess it? 11th International Emission Inventory Conference — “Emission Inventories — Partnering for the Future”, April 15–18, 2002, Atlanta, GA. Google Scholar

About the article

Published Online: 2014-05-29

Published in Print: 2014-03-01


Citation Information: Open Geosciences, Volume 6, Issue 1, Pages 104–111, ISSN (Online) 2391-5447, DOI: https://doi.org/10.2478/s13533-012-0166-z.

Export Citation

© 2014 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Marco Mora, Rachel A. Braun, Taylor Shingler, and Armin Sorooshian
Journal of Geophysical Research: Atmospheres, 2017

Comments (0)

Please log in or register to comment.
Log in