Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year

IMPACT FACTOR 2017: 0.696
5-year IMPACT FACTOR: 0.736

CiteScore 2017: 0.89

SCImago Journal Rank (SJR) 2017: 0.323
Source Normalized Impact per Paper (SNIP) 2017: 0.674

Open Access
See all formats and pricing
More options …

SEDMIN - Microsoft Excel™ spreadsheet for calculating fine-grained sedimentary rock mineralogy from bulk geochemical analysis

Uwe Kackstaetter
Published Online: 2014-07-23 | DOI: https://doi.org/10.2478/s13533-012-0170-3


Normative mineralogical calculations from bulk geochemistry of sedimentary rocks are problematic because of variable depositional environments, particle hydraulics and sedimentary source systems. The development of SEDMIN, a Microsoft Excel™ spreadsheet solution, is a practical attempt for a computational routine focusing specifically on smectite, chlorite, kaolinite, illite and the ambiguous sericite within various pelitic sedimentary lithologies. While in essence a mathematical approach, the use of statistical evaluation of empirical lithogeochemical data combined with modal analytical procedures yields reasonable geochemical associations, more precise chemical phases and revised procedural allotment paradigms. Thus, an algorithm using TiO2 as a key to the normative calculation of kaolinite is proposed. Incorporating additional parameters, such as LOI (Loss-on-ignition) in conjunction with carbon, sulfur, carbonate and sulfate, provides that clay phases can be more accurately determined than from bulk oxides alone. Even when presented with atypical sample data, the spreadsheet solution is able to accurately predict predominant clay minerals. Besides some drawbacks, the likely benefit from SEDMIN is the incorporation of results in classification norms and diagrams indicative of sedimentary lithologies. The ”SEDMIN Sedimentary Mineral Calculator.xlsx” spreadsheet can be freely downloaded from http://earthscienceeducation.net/SEDMINSedimentaryMineralCalculator.xlsx.

Keywords: major elements; geochemistry; normative calculation; sedimentary rocks; fine-grained; clay; mineralogy

  • [1] Rosen O. M., Abbyasov A. A., Tipper J. C., MINLITHan Experience-based Algorithm for Estimating the Likely Mineralogical Compositions of Sedimentary Rocks from Bulk Chemical Analyses, Computers and Geosciences, 30(6), 2004, 647–661, http://dx.doi.org/10.1016/j.cageo.2004.03.011 http://dx.doi.org/10.1016/j.cageo.2004.03.011CrossrefGoogle Scholar

  • [2] Kackstaetter U. R., Contaminant Diffusion and Sorption of an Artificial Leachate in Selected Geologic Barriers of Frankonia, Bavaria, Germany, PhD Thesis, Universitätsbibliothek der Universität Würzburg, 2005, http://www.opus-bayern.de/uni-wuerzburg/volltexte/2005/1615/ Google Scholar

  • [3] Dobner A., Tone, Mergel, Lehme. In: Oberflächennahe mineralische Rohstoffe von Bayern, Clays, Marls, Loams. In: Near surface mineral resources of Bavaria, Geol. Bavarica, GLA, Munich, Germany, 86, 1984, 441–494 Google Scholar

  • [4] Haarländer W., Geologische Karte von Bayern 1:25000, Erläuterungen zum Blatt 6432 Erlangen-Süd, Geologic map of Bavaria 1:25000, Explanation for sheet 6432 South Erlangen, GLA, Munich, Germany, 1966 Google Scholar

  • [5] Rutte E. Einführung in die Geologie von Unterfranken, Introduction to the geology of lower Franconia, Würzburg: Laborarztverl., 1957, Print Google Scholar

  • [6] Schwarzmeier J., Geologische Karte von Bayer, Erläuterungen zum Blatt Nr. 6123 Marktheidenfeld, Geologic map of Bavaria, Explanation for sheet 6123 Marktheidenfeld, Bayerisches Geologisches Landesamt, 1979 Google Scholar

  • [7] Mehra O. P., Jackson M. L., Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate, Clays and Clay Minerals, 7, 1960, 317–327, DOI: 10.1346/CCMN.1958.0070122 http://dx.doi.org/10.1346/CCMN.1958.0070122CrossrefGoogle Scholar

  • [8] Wilson M. J., X-ray powder diffraction methods. In: Wilson, M.J. (Ed.), A handbook of determinative, methods in clay mineralogy, Blackie, Chapmann & Hall, 1987, 26–98 Google Scholar

  • [9] Tributh, H., Qualitative und ”quantitative” Bestimmung der Tonminerale in Bodentonen. In: Tributh, H., and Lagaly, G. (Eds.), Identifizierung und Characterisierung von Tonmineralen, Qualitative and quantitative determination of clay minerals in soil clays. In: Identification and characterization of clay minerals, Berichte der Deutschen Ton-u. Tonmineralgruppe e.V., DTTG-Convention, Gießen, May, 10.–12, 1989 Google Scholar

  • [10] Kohler E. E., Heimerl H., Czurda K., Quantitative Mineralanalyse, Sonderdruck. In: Methodenhandbuch für tonmineralogische Untersuchungen, Quantitative mineral analysis, special edition, In: Methods for clay mineral examination, Bundesanstalt f. Geowiss. u. Rohstoffe, Hannover, 1994 Google Scholar

  • [11] Köster H. M., and Schwertmann U., Beschreibung einzelner Tonminerale, In: Jasmund, K. and Lagaly, G. (Eds.), Tonminerale und Tone: Struktur, Eigenschaften, Anwendungen und Einsatz in Industrie und Umwelt, Description of individual clay minerals. In: Clay minerals and clays: structure, properties, purpose and uses in indurstry and environment, Steinkopff, Darmstadt, 1993, 33–88, DOI: 10.1007/978-3-642-72488-6_2 CrossrefGoogle Scholar

  • [12] DIN.18.129, Baugrund, Versuche und Versuchsgeräte: Kalkgehaltsbestimmung, Building sites, testing and testing devices: determining carbonate concentrations, Beuth, Berlin, 1990 Google Scholar

  • [13] Laves D. u. Jähn, G., Zur quantitativen röntgenographischen Bodenton-Mineralanalyse, Concerning quantitative x-ray diffractive soil clay mineral analysis, Arch. Ackeru. Pflanzenbau u. Bodenkde., 16, H. 10, 1972, 735–739 Google Scholar

  • [14] Imbrie J., Poldervaart A., Mineral Compositions Calculated from Chemical Analyses of Sedimentary Rocks, J. Sediment. Petrol., 1959, 29, No. 4, 588–595, DOI: 10.1306/74D709A2-2B21-11D7-8648000102C1865D http://dx.doi.org/10.1306/74D709A2-2B21-11D7-8648000102C1865DCrossrefGoogle Scholar

  • [15] Gaines R. V., Skinner H. C. W., Foord E. E., Rosenzweig A., Dana’s New Mineralogy, 8th Edition, John Wiley and Sons, New York, 1997 Google Scholar

  • [16] O’Donoghue M., American Nature Guides — Rocks and Minerals, Gallery Books, New York, 1990 Google Scholar

  • [17] Duda R., Rejl L., Minerals of the World. Arch Cape Press, New York, 1990 Google Scholar

  • [18] Correns C. W., Tillmanns, Titanium: Ti(22). In: Handbook of geochemistry Vol II/2. Ed. by K.H Wedepohl, Springer Verlag: Berlin Heidelberg, 1978, ISBN 3-540-04840-5 Google Scholar

  • [19] Weaver C. E., Pollard L. D., The Chemistry of Clay Minerals, Elsevier, 1973 Google Scholar

  • [20] Dolcater D. L., Syers, J. K., Jackson M. L., Titanium as free oxide and substituted forms in kaolinite and other soil minerals, Clays and Clay Minerals, 1970, 18, 71–79, http://www.clays.org/journal/archive/volume%2018/18-2-71.pdf http://dx.doi.org/10.1346/CCMN.1970.0180202CrossrefGoogle Scholar

  • [21] Weaver C. E., Clays, Muds, and Shales, Elsevier, 1989 Google Scholar

  • [22] Rengasamy P., Substitution of iron and titanium in kaolinite, Clays and Clay Minerals, 24, 1976, 265–266 http://dx.doi.org/10.1346/CCMN.1976.0240509CrossrefGoogle Scholar

  • [23] Levinson A. A., Introduction to exploration geochemistry, 2nd ed., Applied Publishing Ltd., 1980 Google Scholar

  • [24] Folk R. L., Petrology of Sedimentary Rocks. Hemphill Publishing Company, Austin, 1980 Google Scholar

About the article

Published Online: 2014-07-23

Published in Print: 2014-06-01

Citation Information: Open Geosciences, Volume 6, Issue 2, Pages 170–181, ISSN (Online) 2391-5447, DOI: https://doi.org/10.2478/s13533-012-0170-3.

Export Citation

© 2014 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in