Jump to ContentJump to Main Navigation
Show Summary Details

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year


IMPACT FACTOR increased in 2015: 0.726
5-year IMPACT FACTOR: 0.898

SCImago Journal Rank (SJR) 2015: 0.349
Source Normalized Impact per Paper (SNIP) 2015: 0.753
Impact per Publication (IPP) 2015: 0.928

Open Access
Online
ISSN
2391-5447
See all formats and pricing




SEDMIN - Microsoft Excel™ spreadsheet for calculating fine-grained sedimentary rock mineralogy from bulk geochemical analysis

Uwe Kackstaetter
  • Department of Earth and Atmospheric Sciences, Metropolitan State University of Denver, Denver, CO, 80217, USA
  • :
Published Online: 2014-07-23 | DOI: https://doi.org/10.2478/s13533-012-0170-3

Abstract

Normative mineralogical calculations from bulk geochemistry of sedimentary rocks are problematic because of variable depositional environments, particle hydraulics and sedimentary source systems. The development of SEDMIN, a Microsoft Excel™ spreadsheet solution, is a practical attempt for a computational routine focusing specifically on smectite, chlorite, kaolinite, illite and the ambiguous sericite within various pelitic sedimentary lithologies. While in essence a mathematical approach, the use of statistical evaluation of empirical lithogeochemical data combined with modal analytical procedures yields reasonable geochemical associations, more precise chemical phases and revised procedural allotment paradigms. Thus, an algorithm using TiO2 as a key to the normative calculation of kaolinite is proposed. Incorporating additional parameters, such as LOI (Loss-on-ignition) in conjunction with carbon, sulfur, carbonate and sulfate, provides that clay phases can be more accurately determined than from bulk oxides alone. Even when presented with atypical sample data, the spreadsheet solution is able to accurately predict predominant clay minerals. Besides some drawbacks, the likely benefit from SEDMIN is the incorporation of results in classification norms and diagrams indicative of sedimentary lithologies. The ”SEDMIN Sedimentary Mineral Calculator.xlsx” spreadsheet can be freely downloaded from http://earthscienceeducation.net/SEDMINSedimentaryMineralCalculator.xlsx.

Keywords: major elements; geochemistry; normative calculation; sedimentary rocks; fine-grained; clay; mineralogy

  • [1] Rosen O. M., Abbyasov A. A., Tipper J. C., MINLITHan Experience-based Algorithm for Estimating the Likely Mineralogical Compositions of Sedimentary Rocks from Bulk Chemical Analyses, Computers and Geosciences, 30(6), 2004, 647–661, http://dx.doi.org/10.1016/j.cageo.2004.03.011 http://dx.doi.org/10.1016/j.cageo.2004.03.011 [Crossref]

  • [2] Kackstaetter U. R., Contaminant Diffusion and Sorption of an Artificial Leachate in Selected Geologic Barriers of Frankonia, Bavaria, Germany, PhD Thesis, Universitätsbibliothek der Universität Würzburg, 2005, http://www.opus-bayern.de/uni-wuerzburg/volltexte/2005/1615/

  • [3] Dobner A., Tone, Mergel, Lehme. In: Oberflächennahe mineralische Rohstoffe von Bayern, Clays, Marls, Loams. In: Near surface mineral resources of Bavaria, Geol. Bavarica, GLA, Munich, Germany, 86, 1984, 441–494

  • [4] Haarländer W., Geologische Karte von Bayern 1:25000, Erläuterungen zum Blatt 6432 Erlangen-Süd, Geologic map of Bavaria 1:25000, Explanation for sheet 6432 South Erlangen, GLA, Munich, Germany, 1966

  • [5] Rutte E. Einführung in die Geologie von Unterfranken, Introduction to the geology of lower Franconia, Würzburg: Laborarztverl., 1957, Print

  • [6] Schwarzmeier J., Geologische Karte von Bayer, Erläuterungen zum Blatt Nr. 6123 Marktheidenfeld, Geologic map of Bavaria, Explanation for sheet 6123 Marktheidenfeld, Bayerisches Geologisches Landesamt, 1979

  • [7] Mehra O. P., Jackson M. L., Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate, Clays and Clay Minerals, 7, 1960, 317–327, DOI: 10.1346/CCMN.1958.0070122 http://dx.doi.org/10.1346/CCMN.1958.0070122 [Crossref]

  • [8] Wilson M. J., X-ray powder diffraction methods. In: Wilson, M.J. (Ed.), A handbook of determinative, methods in clay mineralogy, Blackie, Chapmann & Hall, 1987, 26–98

  • [9] Tributh, H., Qualitative und ”quantitative” Bestimmung der Tonminerale in Bodentonen. In: Tributh, H., and Lagaly, G. (Eds.), Identifizierung und Characterisierung von Tonmineralen, Qualitative and quantitative determination of clay minerals in soil clays. In: Identification and characterization of clay minerals, Berichte der Deutschen Ton-u. Tonmineralgruppe e.V., DTTG-Convention, Gießen, May, 10.–12, 1989

  • [10] Kohler E. E., Heimerl H., Czurda K., Quantitative Mineralanalyse, Sonderdruck. In: Methodenhandbuch für tonmineralogische Untersuchungen, Quantitative mineral analysis, special edition, In: Methods for clay mineral examination, Bundesanstalt f. Geowiss. u. Rohstoffe, Hannover, 1994

  • [11] Köster H. M., and Schwertmann U., Beschreibung einzelner Tonminerale, In: Jasmund, K. and Lagaly, G. (Eds.), Tonminerale und Tone: Struktur, Eigenschaften, Anwendungen und Einsatz in Industrie und Umwelt, Description of individual clay minerals. In: Clay minerals and clays: structure, properties, purpose and uses in indurstry and environment, Steinkopff, Darmstadt, 1993, 33–88, DOI: 10.1007/978-3-642-72488-6_2 [Crossref]

  • [12] DIN.18.129, Baugrund, Versuche und Versuchsgeräte: Kalkgehaltsbestimmung, Building sites, testing and testing devices: determining carbonate concentrations, Beuth, Berlin, 1990

  • [13] Laves D. u. Jähn, G., Zur quantitativen röntgenographischen Bodenton-Mineralanalyse, Concerning quantitative x-ray diffractive soil clay mineral analysis, Arch. Ackeru. Pflanzenbau u. Bodenkde., 16, H. 10, 1972, 735–739

  • [14] Imbrie J., Poldervaart A., Mineral Compositions Calculated from Chemical Analyses of Sedimentary Rocks, J. Sediment. Petrol., 1959, 29, No. 4, 588–595, DOI: 10.1306/74D709A2-2B21-11D7-8648000102C1865D http://dx.doi.org/10.1306/74D709A2-2B21-11D7-8648000102C1865D [Crossref]

  • [15] Gaines R. V., Skinner H. C. W., Foord E. E., Rosenzweig A., Dana’s New Mineralogy, 8th Edition, John Wiley and Sons, New York, 1997

  • [16] O’Donoghue M., American Nature Guides — Rocks and Minerals, Gallery Books, New York, 1990

  • [17] Duda R., Rejl L., Minerals of the World. Arch Cape Press, New York, 1990

  • [18] Correns C. W., Tillmanns, Titanium: Ti(22). In: Handbook of geochemistry Vol II/2. Ed. by K.H Wedepohl, Springer Verlag: Berlin Heidelberg, 1978, ISBN 3-540-04840-5

  • [19] Weaver C. E., Pollard L. D., The Chemistry of Clay Minerals, Elsevier, 1973

  • [20] Dolcater D. L., Syers, J. K., Jackson M. L., Titanium as free oxide and substituted forms in kaolinite and other soil minerals, Clays and Clay Minerals, 1970, 18, 71–79, http://www.clays.org/journal/archive/volume%2018/18-2-71.pdf http://dx.doi.org/10.1346/CCMN.1970.0180202 [Crossref]

  • [21] Weaver C. E., Clays, Muds, and Shales, Elsevier, 1989

  • [22] Rengasamy P., Substitution of iron and titanium in kaolinite, Clays and Clay Minerals, 24, 1976, 265–266 http://dx.doi.org/10.1346/CCMN.1976.0240509 [Crossref]

  • [23] Levinson A. A., Introduction to exploration geochemistry, 2nd ed., Applied Publishing Ltd., 1980

  • [24] Folk R. L., Petrology of Sedimentary Rocks. Hemphill Publishing Company, Austin, 1980


Published Online: 2014-07-23

Published in Print: 2014-06-01


Citation Information: Open Geosciences. Volume 6, Issue 2, Pages 170–181, ISSN (Online) 2391-5447, DOI: https://doi.org/10.2478/s13533-012-0170-3, July 2014

© 2014 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Comments (0)

Please log in or register to comment.