Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr


IMPACT FACTOR 2017: 0.696
5-year IMPACT FACTOR: 0.736

CiteScore 2017: 0.89

SCImago Journal Rank (SJR) 2017: 0.323
Source Normalized Impact per Paper (SNIP) 2017: 0.674

Open Access
Online
ISSN
2391-5447
See all formats and pricing
More options …

Assessment of surface runoff depth changes in Sǎrǎţel River basin, Romania using GIS techniques

Costache Romulus / Fontanine Iulia / Corodescu Ema
  • Department of Geography, Faculty of Geography and Geology, Alexandru Ioan Cuza University of Iaşi, 20 A, Carol I Boulevard, 700505, Iaşi, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-08-06 | DOI: https://doi.org/10.2478/s13533-012-0181-0

Abstract

Sǎrǎţel River basin, which is located in Curvature Subcarpahian area, has been facing an obvious increase in frequency of hydrological risk phenomena, associated with torrential events, during the last years. This trend is highly related to the increase in frequency of the extreme climatic phenomena and to the land use changes. The present study is aimed to highlight the spatial and quantitative changes occurred in surface runoff depth in Sǎrǎţel catchment, between 1990–2006. This purpose was reached by estimating the surface runoff depth assignable to the average annual rainfall, by means of SCS-CN method, which was integrated into the GIS environment through the ArcCN-Runoff extension, for ArcGIS 10.1. In order to compute the surface runoff depth, by CN method, the land cover and the hydrological soil classes were introduced as vector (polygon data), while the curve number and the average annual rainfall were introduced as tables. After spatially modeling the surface runoff depth for the two years, the 1990 raster dataset was subtracted from the 2006 raster dataset, in order to highlight the changes in surface runoff depth.

Keywords: Sǎrǎţel; Curve Number; Runoff; Land use change

  • [1] Gaume E., Livet M., Desbordesc M., Villeneuve J.-P., Hydrological analysis of the river Aude, France, flash flood on 12 and 13 November 1999, Journal of Hydrology, 286, 2004, 135–154 http://dx.doi.org/10.1016/j.jhydrol.2003.09.015Google Scholar

  • [2] Pradhan B, Youssef A. M., A 100-year maximum flood susceptibility mapping using hydrological and hydrodynamic models: a case study, Journal of Flood Risk Management, 4,(3), 2011, 189–202 http://dx.doi.org/10.1111/j.1753-318X.2011.01103.xCrossrefGoogle Scholar

  • [3] Youssef, A., Pradhan, B., Hassan, A. M., Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery, Environmental Earth Sciences, 62, 2011, 3, 611–623 http://dx.doi.org/10.1007/s12665-010-0551-1Web of ScienceCrossrefGoogle Scholar

  • [4] Smith G., Flash Flood Potential: Determining the Hydrologic Response of FFMP Basins to Heavy Rain by Analyzing Their Physiographic Characteristics, 2003, http://www.cbrfc.noaa.gov/papers/ffp_wpap.pdf Google Scholar

  • [5] Zaharia L., Minea G., Ioana-Toroimac G., Barbu R., Sârbu I., Estimation of the Areas with Accelerated Surface Runoff in the Upper Prahova Watershed (Romanian Carpathians), 2012, http://balwois.com/2012/USB/papers/595.pdf Google Scholar

  • [6] Prǎvǎlie R., Costache R., The analysis of the susceptibility of the flash-floodsÊij genesis in the area of the hydrographical basin of Bâsca Chiojdului river, Forum Geografic, 2014, XIII, 1. Available online. DOI:10.5775/fg/2067-4635.2014.071.i CrossrefGoogle Scholar

  • [7] Minea G., Assessment of the Flas-Flood Potential of Basca River Catchment (Romania) based on Physiographic Factors, Central European Journal of Geosciences 5,(3), 2013, 449 1–10 http://dx.doi.org/10.2478/s13533-012-0137-4CrossrefGoogle Scholar

  • [8] Kumar Pramod, Tiwart K. N., Pal D. K., Establishing SCS Runoff Curve Number from IRS Digital Data Base, Journal of the Indian Society of Remote Sensing, 19(4), 1991, 245–252 http://dx.doi.org/10.1007/BF03023971CrossrefGoogle Scholar

  • [9] Mack Mary J., HER-Hhydrologic evaluation of runoff; The Soil Conservation Service Curve Number technique as an interactive computer model, Computers & Geosciences, 21(8), 1995, 929–935 http://dx.doi.org/10.1016/0098-3004(95)00029-8CrossrefGoogle Scholar

  • [10] Scozzafava M., Tallini M., Net Infiltration in the Gran Sasso Massif of Central Italy using Thornthwaite water budget and curve-number method, Hydrogeology Journal, 9(5), 2001, 461–475 http://dx.doi.org/10.1007/s100400100151CrossrefGoogle Scholar

  • [11] Xiaoyong Z., Min-Lang H., ArcCN-Runoff: an ArcG.I.S. tool for generating curve number and runoff maps, Environmental Modelling & Software, 2004, XX Google Scholar

  • [12] Duncan O. J., Tollner E. W., Ssegane H., McCutcheon S. C., Curve Number approaches to estimate drainage from a Yard Waste Composting Pad, Applied Engineering in Agriculture, 29(2), 2013, 201–208 http://dx.doi.org/10.13031/2013.42652Google Scholar

  • [13] Al-Hasan A. A. S., Mattar Y. E-S., Mean runoff coefficient estimation for ungauged streams in the Kingdom of Saudi Arabia, Arabian Journal of Geosciences, 2013, Available online, DOI:10.1007/s12517-013-0892-7 CrossrefGoogle Scholar

  • [14] Mahmoud S. H., Mohammad E. S., Alazba A. A., Determination of potential runoff coefficient for Al-Baha Region, Saudi Arabia using GIS, Arabian Journal of Geosciences, 2014, Available online, DOI:10.1007/s12517-014-1303-4 CrossrefGoogle Scholar

  • [15] Haidu I., Crǎciun, A. I., Bilasco S., The SCS-CN model assisted by G.I.S — alternative estimation of the hydric runoff in real time, Geographia Technica, 2(1), 2007, 1–7 Google Scholar

  • [16] Bilasco S., Implementarea GIS Ãon modelarea viiturilor pe versanti, Casa Cǎrtii de Stiintǎ Cluj-Napoca, 2008 Google Scholar

  • [17] Minea G., Bazinul hidrografic al râului Bâsca — Studiu de hidrogeografie, tezǎ de doctorat, Universitatea din Bucureşti, Facultatea de Geografie, Bucureşti, 2011 Google Scholar

  • [18] Gyory Maria-Mihaela, Haidu I., Unit hydrograph generation for the ungauged subwatershed in the Monroştia Basin, Geographia Technica, 6(2), 2011, 23–29 Google Scholar

  • [19] Domniţa M., Runoff modeling using GIS. Application in torrential basins in the 591 Apuseni Mountains, Ph.D Thesis, Cluj Napoca. 2012 Google Scholar

  • [20] Costache R., Using GIS techniques for assessing Lag time and Concentration time in small river basins. Case study:Pecineaga river basin, Romania, Geographia Technica, 9(1), 2014, 31–38 Google Scholar

  • [21] Elbialy S., Mahmoud A., Pradhan B., Buchroithner M., Application of spaceborne SAR data for extraction of soil moisture and its use in hydrological modelling at Gottleuba Catchment, Saxony, Germany, Journal of Flood Risk Management, 7(2), 2014, 159–175 http://dx.doi.org/10.1111/jfr3.12037CrossrefGoogle Scholar

  • [22] Hernandez M., Miller S. N., Goodrich D. C., Goff B. F., Kepner W. G., Edmonds C. M., Jones K. B., Modeling runoff response to land cover and rainfall spatial variability in semi-arid watersheds, Environmental Monitoring And Assessment, 64, 2000, 285–298 http://dx.doi.org/10.1023/A:1006445811859CrossrefGoogle Scholar

  • [23] Jetten V. G., LISEM User Manual. Utrecht Center for Environment and Landscape Dynamics, Utrecht University, Utrecht, 2002 Google Scholar

  • [24] Zhang Y., Wei H., Nearing M. A., Effects of antecedent soil moisture on runoff modeling in small semiarid watersheds of southeastern Arizona, Hydrological Earth System Science, 15(10), 2011, 3171–3179 http://dx.doi.org/10.5194/hess-15-3171-2011CrossrefWeb of ScienceGoogle Scholar

  • [25] Billa L., Assilzadeh H., Mansor S., Mahmud A. R., Ghazali A. H., Comparison of recorded rainfall with quantitative precipitation forecast in a rainfall-runoff simulation for the Langat River basin, Malaysia, Central European Journal of Geosciences, 3(3), 2011, 309–317 http://dx.doi.org/10.2478/s13533-011-0030-6CrossrefGoogle Scholar

  • [26] Hegedus P, Czigany S., Balatony L., Pirkhoffer E, Analysis of soil boundary conditions of flash-floos in a small basin in SW Hunhary, Central European Journal of Geosciences, 5(1), 2013, 97–111 http://dx.doi.org/10.2478/s13533-012-0119-6CrossrefGoogle Scholar

  • [27] Ghoneim E., Foody G., M., Assessing flash flood hazard in an arid mountainous region, Arabian journal of Geosciences, 6(4), 2013, 1191–1202 http://dx.doi.org/10.1007/s12517-011-0411-7CrossrefGoogle Scholar

  • [28] AlFugura A., Billa, L., Pradhan B., Mohamed T.A., Rawashdeh S., Coupling of hydrodynamic model and aerial photogrammetry-derived digital surface model for flood simulation scenarios using GIS: Kuala Lumpur flood, Malaysia, Disaster Advances, 4(4), 2011, 20–28 Google Scholar

  • [29] Garcia-Ruiz J.M., Lasanta T., Marti C., Gonzales C., White S., Ortigosa L., Flano P.R., Changes in Runoff and Erosion as a Consequence of Land-Use Changes in the Central Spanish Pyrenees, Physics and Chemistry of the Earth, 20(3), 1995, 301–307 http://dx.doi.org/10.1016/0079-1946(95)00041-0CrossrefGoogle Scholar

  • [30] Haverkamp S., Fohrer N., & Frede H.G., Assessment of the effect of land use patterns on hydrologic landscape functions: a comprehensive GIS based tool to minimize model uncertainty resulting from spatial aggregation, Hydrological Processes, 19(3), 2005, 715–727 http://dx.doi.org/10.1002/hyp.5626CrossrefGoogle Scholar

  • [31] Hernández-Guzmán R, Ruiz-Luna A, & Berlanga-Robles CA., Assessment of runoff response to landscape changes in the San Pedro subbasin (Nayarit, Mexico) using remote sensing data and GIS, Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 43(12), 2008, 1471–1482 Google Scholar

  • [32] Descroix L., Esteves M., Souley Yéro K., Rajot J.-L., Malam Abdou M., Boubkraoui S., Lapetite J. M., Dessay N., Zin I., Amogu O., Bachir A., Bouzou Moussa I., Le Breton E., Mamadou I., Runoff evolution according to land use change in a small Sahelian catchment, Hydroogy and Earth System Scences, 8(1), 2011, 1569–1607 http://dx.doi.org/10.5194/hessd-8-1569-2011CrossrefGoogle Scholar

  • [33] Costea G., Deforestation process consequences upon surface runoff coefficients. Catchment level case staudy from the Apuseni Mountains, Romania, Geographia Technica, 8(1), 2013, 28–33 Google Scholar

  • [34] Costache R., Fontanine I., Land use changes in the Subcarpathian area between Buzau and Slanic rivers, during 1990–2006 and their consequnces on surface runoff, Riscuri si catastrofe, 13(2), 2013, 171–182 Google Scholar

  • [35] Drobot R., Metodologie de determinare a bazinelor hidrografice torentiale Ãőn care se aflǎ aşezǎri umane expuse pericolului de viituri rapide, Contract de Cercetare, Universitatea Tehnicǎ de Construcţii, Bucureşti, 2007 Google Scholar

  • [36] Pisota I., Zaharia Liliana & Diaconu D., Hidrologie (Ediţia a II-a revizuitǎ şi adǎugitǎ), Editura Universitarǎ Bucureşti, Bucureşti, 2010 Google Scholar

  • [37] Arghiriade C., Rolul hidrologic al padurii. Editura Ceres, Bucharest, 1977 Google Scholar

  • [38] Engineering Staff. National Engineering Handbook. USDA-NRCS, Engineering Division. U.S. Gov. Print. Office, Washington DC, Part 630, Section 4, Chapter 7, 2007 Google Scholar

  • [39] Ponce V. M., Hawkins R. H., Runoff curve number: has it reached maturity, Journal of Hydrologic Engineering, 1(1), 1996, 11–19 http://dx.doi.org/10.1061/(ASCE)1084-0699(1996)1:1(11)CrossrefGoogle Scholar

  • [40] Dawod G. M., Mirza M. N., Al-Ghamdi K. A., Assement of several flood estimation methodologies in Makkah metropolitan area, Saudi Arabia, Arabian Journal of Geoscience, 6(3), 2013, 985–993 http://dx.doi.org/10.1007/s12517-011-0405-5Web of ScienceCrossrefGoogle Scholar

  • [41] Masoud A. A., Runoff modeling of the wadi system for estimating flash-flood and groundwater recharge potential in Southern Sinai, Egypt, Arabian Journal of Geoscience, 4(5–6), 2011, 785–801 http://dx.doi.org/10.1007/s12517-009-0090-9CrossrefGoogle Scholar

  • [42] Abdel-Latif A., Sherief Y., Morphometric analysis and flash-floods of Wadi Sudr and Wadi Wardan, Gulf of Suez, Egypt: using digital elevation model, Arabian Journal of Geoscience, 5(2), 2012, 181–195 http://dx.doi.org/10.1007/s12517-010-0156-8CrossrefGoogle Scholar

  • [43] Corine Land Cover (2006), raster data, European Environment Agency (eea.europa.eu) Google Scholar

  • [44] The soils map in electronic format, 1:200,000, ICPA Bucureşti Google Scholar

  • [45] National Meteorological Administration, 2013 Google Scholar

  • [46] National Institute of Hydrology and Water Management, 2011 Google Scholar

About the article

Published Online: 2014-08-06

Published in Print: 2014-09-01


Citation Information: Open Geosciences, Volume 6, Issue 3, Pages 363–372, ISSN (Online) 2391-5447, DOI: https://doi.org/10.2478/s13533-012-0181-0.

Export Citation

© 2014 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in