Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year

IMPACT FACTOR 2016 (Open Geosciences): 0.475

CiteScore 2016: 0.87

SCImago Journal Rank (SJR) 2016: 0.346
Source Normalized Impact per Paper (SNIP) 2016: 0.690

Open Access
See all formats and pricing
More options …

Architecture of Upper Cretaceous rhyodacitic hyaloclastite at the polymetallic Madneuli deposit, Lesser Caucasus, Georgia

Nino Popkhadze / Robert Moritz / Vladimer Gugushvili
Published Online: 2014-08-06 | DOI: https://doi.org/10.2478/s13533-012-0182-z


This study focuses on a well-exposed section of the Artvin-Bolnisi zone located in the open pit of the Madneuli ore deposit, Lesser Caucasus, Georgia. Detailed field and petrographic observations of the main volcano-sedimentary lithofacies of its Upper Cretaceous stratigraphic succession were carried out. Whole rock geochemistry studies support the interpretation of intense silicification of the rocks, and supports our petrographic studies of samples from the Madneuli open pit, including lobe-hyaloclastite described in detail during this study. A particular focus concerned lobe-hyaloclastite exposures in the Madneuli open pit, singled out for first time in this area of the Lesser Caucasus. Two types of hyaloclastite are recognized at the Madneuli deposit: hyaloclastite with pillow-like forms and hyaloclastite with glass-like selvages. The petrographic description shows a different nature for both: hyaloclastite with glass-like selvages represented by devitrification of volcanic glass, which is replaced by quartz and K-feldspar overgrowth of crystals in the groundmass and elongated K-feldspar porphyry phenocrysts. Perlitic cracks were identified during thin section observation. The Hyaloclastite with pillow-like forms consists of relicts of volcanic glass and large pumice clasts replaced by sericite. Key observations are presented in the case of lobe-hyaloclastite and their immediate host volcano-sedimentary environment to constrain their depositional setting. A paleoreconstruction of their environment is proposed, in which hyaloclastite record the interaction of magma emplaced in unconsolidated volcano-sedimentary rocks associated with a submarine rhyodacite dome, emplaced during several magmatic pulses. Our study shows that the predominant part of the host rock sequence of the Madneuli polymetallic deposit was deposited under submarine conditions, which is in agreement with volcanogenic massive sulfide models or transitional, shallow submarine magmatic to epithermal models that were proposed by previous studies.

Keywords: Hyaloclastite; lobe-hyaloclastite; pillow-like forms; glass-like selvages; facies

  • [1] Yilmaz A., Adamia Sh., Chabukiani A., Chkhotua T., Erdogan K., Tuzcu S., Karabiyikoglu M., Structural correlation of the southern Transcaucasus (Georgia) — eastern Pontides (Turkey), Geological Society, London, Special Publications, 173, 2000, 171–182 http://dx.doi.org/10.1144/GSL.SP.2000.173.01.08CrossrefGoogle Scholar

  • [2] Bachaldin V., Tvalchrelidze G., Some regulations of formation and distribution of ore deposits in volcanogenic rocks (Southern Georgia). Proceedings of the Institution of Higher Education, Geological Prospecting, 1, 1963, 61–72 (in Russian) Google Scholar

  • [3] Malinovsky E., Sokolov A., Lezhepiokov L., Structural-geological conditions and stages of formation of Madneuli copper-barite polymetallic deposit (Lesser Caucasus), Geology of Ore Deposits 4, 1987, 44–57 Google Scholar

  • [4] Gugushvili V., Omiadze G., Ignimbrite volcanism and ore mineralization (Bolnisi Ore District, the Lesser Caucasus), Geology of Ore Deposits, 2, 1988, 105–109 (in Russian) Google Scholar

  • [5] Kekelia S., Ambokadze A., Ratman I., Volcanogenic deposits of base metals of paleoisland arc structures and method of their prediction, Metsniereba, Tbilisi, 1993, 0–96 Google Scholar

  • [6] Moon C., Gugushvili V., Kekelia M., Kekelia S., Migineishvili R., Otkhmezuri Z., Ozgur N., Comparison of mineral deposits between Georgian and Turkish sectors of the Tethyanmetallogenic belt. In: Piestrzynski et al (eds), Mineral deposits at the Beginning of the 21st Century. 6th Biennial SGA Meeting Krakow, Poland, 26–29 August, 309–312, 2001 Google Scholar

  • [7] Kekelia S., Kekelia M., Otkhmezuri Z., Ozgur N., Moon C., Ore-forming systems in volcanogenicsedimentary sequences by the example of base metal deposits of the Caucasus and East PonticMetallotect. Bulletin of the Mineral Research and Exploration, 129, 2004, 1–16 Google Scholar

  • [8] Gugushvili V., Kutelia Z., Porphyry gold-copper system of the Bolnisi mining district and analysis of two types of gold mineralization. Proceedings of the International Workshop: gold and base metal deposits of the Mediterranean and the south Caucasus-challenges and opportunities, Tbilisi, 13–14 Google Scholar

  • [9] Migineishvili R., Hybrid nature of the Madneuli Cu-Au deposit, Georgia. Bulgarian Academy of Sciences, proceedings of the 2005 Field Workshop, 127–132, 2012 Google Scholar

  • [10] Gialli S., The controversial polymetallicMadneuli deposit, Bolnisi district, Georgia: hydrothermal alteration and ore mineralogy. Unpublished M.Sc. thesis, University of Geneva, 2013, 1–143 Google Scholar

  • [11] Popkhadze N., Moritz R., Gialli S., Beridze T., Gugushvili V., Khutsishvili S., Major volcanosedimentary facies types of the Madneulipolymetallic deposit, Bolnisi district, Georgia: Implications for the host rock depositional environment. In: Erik Jonsson et al. (eds), Mineral deposit research for a hightech world, 12th SGA Meeting, 12–15 August 2013, Sweden, Uppsala, 2, 576–579 Google Scholar

  • [12] Popkhadze N., Beridze T., Moritz R., Gugushvili V., Khutsishvili S., Facies analysis of the volcanosedimentary host rocks of the Cretaceous Madneuli massive sulphide deposit, Bolnisi district, Georgia. Bulletin of the Georgia National Academy of Sciences, 3, 2009, 103–108 Google Scholar

  • [13] Popkhadze N., First evidence of hyaloclastites at Madneuli deposit, Bolnisi district, Georgia, Bulletin of the Georgia National Academy of Sciences, 6, 2012, 83–90 Google Scholar

  • [14] Mederer J., Moritz R., Ulianov A., Chiaradia M., Middle Jurassic to Cenozoic evolution of arc magmatsm during Neotethyssubduction and arccontinent collision in the Kapan zone, southern Armenia, Lithos, 2013, 177, 61–78 http://dx.doi.org/10.1016/j.lithos.2013.06.005CrossrefGoogle Scholar

  • [15] McPhie J., Allen R., Facies architecture of mineralized submarine volcanic sequences: Cambrian Mount Read Volcanics, western Tasmania, Economic Geology, 87, 1992, 587–596 http://dx.doi.org/10.2113/gsecongeo.87.3.587CrossrefGoogle Scholar

  • [16] McPhie J., Allen R., Submarine, silicic, syn-eruptive pyroclastic units in the Mount Read Volcanics, Western Tasmania: influences of vent setting and proximity on lithofacies characteristics. In: White J., Smellie J., Clague D., (Eds.), Explosive Subaqueous Volcanism: Geophysical Monograph Series, 140, 2003, 245–258 http://dx.doi.org/10.1029/140GM16CrossrefGoogle Scholar

  • [17] Doyle M., McPhie J., Facies architecture of a silicic intrusion-dominated volcanic centre at Highway-Reward, Queensland, Australia, Journal of Volcanology and Geothermal Research, 99, 2000, 79–96 http://dx.doi.org/10.1016/S0377-0273(00)00159-1CrossrefGoogle Scholar

  • [18] Allen R., Weihed P., Svenson S., Setting of Zn-Cu-Au-Ag massive sulfide deposits in the evolution and facies architecture of a 1.9 Ga marine volcanic arc, Skellefte District, Sweden, Economic Geology, 91, 1997, 1022–1053 http://dx.doi.org/10.2113/gsecongeo.91.6.1022CrossrefGoogle Scholar

  • [19] Gibson H., Galley A., Volcanogenic massive sulphidedeposits of the Archean, Norandadistrict, Quebec. In: Goodfellow W., [Ed.], Mineral deposits of Canada: A synthesis of major deposits, types district metallogeny, the evalution of geological provinces and exploration methods: Special Publication 5, Mineral Deposits Division, Geological Association of Canada, 533–552 Google Scholar

  • [20] Rogers N., van Staal C., McNicoll V., Theriault R., Volcanology and tectonic setting of the northern Bathurst Mining Camp. Part 1. Extension and rifting of the Popelogan arc. In: Goodfellow W., McCutcheon S., Peter J., (Eds.), Massive Sulphide Deposits in the Bathurst Mining Camp, New brunswick, and Northern Maine, Economic Geology, 11, 2003, 157–179 Google Scholar

  • [21] Rosa C., McPhie J., Relvas J., Type of volcanoes hosting the massive sulfide deposits of the Iberian Pyrite Belt, Journal of Volcanology and Geothermal Research, 194, 2010, 107–12 http://dx.doi.org/10.1016/j.jvolgeores.2010.05.005CrossrefGoogle Scholar

  • [22] Adamia Sh., Zakariadze G., Ckhotua T., Sadradze N., Tsereteli N., Chabukiani A., Gventsadze A., Geology of the Caucasus, Turkish Journal of Earth Sciences, 20, 2011, 489–544 Google Scholar

  • [23] Sosson M., Rolland Y., Muller C., Danelian T., Menkonyan R., Kekelia S., Adamia Sh., Babazadech V., Kangarli T., Avagyan A., Galoyan G., Mosar J., Subduction, obduction and collision in the Lesser Caucasus (Armenia, Azerbaijan, Georgia), new insights, Geological Society, London, Special Publications, 340, 2010, 329–352 http://dx.doi.org/10.1144/SP340.14CrossrefGoogle Scholar

  • [24] Zakariadze G., Yildirim D., Adamia Sh., Oberhansli R., Karpenko S., Bazulev B., Solov’eva N., Geochemistry and geochronology of the Neoproterozoic Pan-African Transcaucasian Massif (Republic of Georgia) and implications island arc evolution of the late Precambrian Arabian-Nubian Shield, Gondwana Research, 11, 2007, 92–108 http://dx.doi.org/10.1016/j.gr.2006.05.012CrossrefGoogle Scholar

  • [25] Vashakidze S., Gugushvili V., Geological map of Bolnisi district (1:50 000). Caucasian Institute of Mineral Resources, Tbilisi, Georgia, 2006 Google Scholar

  • [26] Gambashidze R., Nadareishvili G., Structure and stages of development of the Upper Cretaceous volcanogenic-sedimentary formation of SE Georgia. In G. A. Tvalchrelidze (ED) volcanism and formation of useful minerals in mobile regions of the Earth “Metsniereba”, 1987, Tbilisi, 152–171 (in Russian) Google Scholar

  • [27] Apkhazava M., Late Cretaceous volcanism and volcanic structures of Bolnisi volcano-tectonic depression, Doctoral thesis, Caucasian Institute of mineral resources, 1–269, 1988 Google Scholar

  • [28] Gambashidze R., Geological development history of Georgia during the upper Cretaceous period. Metsniereba. Al. Janelidze Geological Institute of Georgian Academy of Science. Proceeding, new series 82, 1984, 1–111 (in Russian) Google Scholar

  • [29] Migineishvili R., Gavtadze T., Age of the Madneuli Cu-Au deposit, Georgia: evidence from new nannoplankton data, Bulletin of the Georgia National Academy of Sciences, 4, 2010, 85–91 Google Scholar

  • [30] Moritz R., Selby D., Ovtcharova M., Mederer J., Melkonyan R., Havamkimyan S., Tayan R., Popkhadze N., Gugushvili V., Ramazanov V., Diversity of geodynamic settings during Cu,Au and Mo ore formation in the Lesser Caucasus: New age constraint, 1st Europian Mineralogical Conference, 2–6 September 2012, Frankfurt, Germany, abstract volume Google Scholar

  • [31] Cas R., Wright J., Subaqueous pyroclastic flows and ignimbrites: an assessment, Bulletin of Volcanology, 53, 1991, 357–380 http://dx.doi.org/10.1007/BF00280227CrossrefGoogle Scholar

  • [32] Pittari A., Cas R., Edgar C., Nichols H., Wolff J., Marti J., The influence of paleotopography on facies architecture and pyroclastic flow processes of a lithicrich ignimbrite in a high gradient setting: The Abrigo Ignimbrite, Tenerife, Canary Island, Journal of Volcanology and Geothermal Research, 152, 2006, 273–315 http://dx.doi.org/10.1016/j.jvolgeores.2005.10.007CrossrefGoogle Scholar

  • [33] Gibson H., Morton R., Hudak G., Submarine volcanic processes, deposits and environment favorable for the location of volcanic-associated massive sulfide deposits, Reviews in Economic Geology, 8, 1998, 13–51 Google Scholar

  • [34] Sohn Y., Son M., Jeong J., Jeon Y., Eruption and emplacement of a laterally extensive, crystal-rich, and pumice free ignimbrite (the Cretaceous Kusandong Tuff, Korea), Sedimentary Geology, 220, 2009, 190–203 http://dx.doi.org/10.1016/j.sedgeo.2009.04.020CrossrefGoogle Scholar

  • [35] Lorenz V., Vesiculated tuffs and associated features, Sedimentology, 21, 1974, 273–291 http://dx.doi.org/10.1111/j.1365-3091.1974.tb02059.xCrossrefGoogle Scholar

  • [36] Capaccioni B., Coniglio S., Varicolored and vesiculated tuffs from La-Fossa Volcano, Vulcano Island (Aeolian Archipelago, Italy) — Evidence of syndepositional alteration processes, Bulletin of Volcanology, 57(1), 1995, 61–70 http://dx.doi.org/10.1007/BF00298708CrossrefGoogle Scholar

  • [37] Cas R. A. F., Submarine volcanism — eruption styles, products, and relevance to understanding the hostrock successions to volcanic-hosted massive sulfide deposits, Economic Geology and the Bulletin of the Society of Economic Geologists, 87(3), 1992, 511–541 http://dx.doi.org/10.2113/gsecongeo.87.3.511CrossrefGoogle Scholar

  • [38] Allen R., False pyroclastic textures in altered silicic lavas, with implications for volcanic-associated mineralization, Economic Geology, 85, 1988, 1424–1446 http://dx.doi.org/10.2113/gsecongeo.83.7.1424CrossrefGoogle Scholar

  • [39] McPhie J., Doyle M., Allen R., Volcanic textures: A guide to the interpretation of textures in volcanic rocks. Centre for Ore Deposits and Exploration Studies, University of Tasmania, Hobart, 1993, 1–198 Google Scholar

  • [40] Soriano C., Giordano G., Cas R., Riggs N., Porreca M., Facies architecture, emplacement mechanisms and eruption style of the submarine andesite El Barronal complex, Cabo de Gata, SE Spain, Journal of Volcanology and Geothermal Research, 264, 2013, 210–222 http://dx.doi.org/10.1016/j.jvolgeores.2013.07.001CrossrefGoogle Scholar

  • [41] Soriano C., Riggs N., Giordano G., Porreca M., Conticelli S., Cyclic growth and mass wasting of submarine Los Frailes lava flow and dome complex in Cabo de Gata, SE Spain, Journal of Volcanology and Geothermal Research, 231, 2012, 72–86 http://dx.doi.org/10.1016/j.jvolgeores.2012.04.015CrossrefGoogle Scholar

  • [42] Németh K., Pécskay Z., Martin U., Gméling K., Molnár F., Cronin S. J., Hyaloclastites, peperites and soft-sediment deformation textures of a shallow subaqueous Miocene rhyolitic dome-cryptodome complex, Pálháza, Hungary. In: K. Thomson and N. Petford (Editors), Structure and Emplacement of High-Level Magmatic Systems. Geological Society, London, Special Publications. The Geological Society of London, Bath, UK, 2008, 61–83 Google Scholar

  • [43] Schmincke U., Behncke B., Grasso M., Raffi S., Evolution of the northwestern Iblean Mountains, Sicily: uplift, Plicocene/Pleistocene sea-level changes, paleoenvironment, and volcanism, Geol. Rundsch., 86(3), 1997, 637–669 http://dx.doi.org/10.1007/s005310050169CrossrefGoogle Scholar

  • [44] Lexa J., Seghedi I., Németh K., Szakács A., Koneĉny V., Pécskay Z., Fülöp A., and Kovacs, M., Neogene-Quaternary volcanic forms in the Carpathian-Pannonian Region: a review, Central European Journal of Geosciences, 2(3), 2010, 207–270 http://dx.doi.org/10.2478/v10085-010-0024-5CrossrefGoogle Scholar

  • [45] Allen R., Stadlbauer E., and Keller J., Stratigraphy of the Kos Plateau Tuff: product of a major Quaternary explosive rhyolitic eruption in the eastern Aegean, Greece, International Journal of Earth Sciences, 88(1), 1999, 132–156 http://dx.doi.org/10.1007/s005310050251CrossrefGoogle Scholar

  • [46] Stewart L., and McPhie J., Internal structure and emplacement of an Upper Pliocene dacitecryptodome, Milos Island, Greece, Journal of Volcanology and Geothermal Research, 124(1–2), 2003, 129–148 http://dx.doi.org/10.1016/S0377-0273(03)00074-XCrossrefGoogle Scholar

  • [47] Stewart L., and McPhie J., Facies architecture and Late Pliocene-Pleistocene evolution of a felsic volcanic island, Milos, Greece, Bulletin of Volcanology, 68(7–8), 2006, 703–726 http://dx.doi.org/10.1007/s00445-005-0045-2CrossrefGoogle Scholar

  • [48] Scutter R., Cas R. A. F., Moore L., and de Rita D., Facies architecture and origin of a submarine rhyolitic lava flow-dome complex, Ponza, Italy, Journal of Geophysical Research-Solid Earth, 103(B11), 1998, 27551–27566 http://dx.doi.org/10.1029/98JB01121CrossrefGoogle Scholar

  • [49] Gibson H., Watkinson D., Volcanogenic massive sulfide deposits of the Noranda cauldron and shield volcano, Quebec: Canadian Institute Mining Metallurgy, 43, 1990, 119–132 Google Scholar

  • [50] Furnes H., Fridleifsson I., Atkins F., Subglasial volcanics. On the formation of acid hyaloclastites, Journal of Volcanology and Geothermal Research, 8, 1980, 95–110 http://dx.doi.org/10.1016/0377-0273(80)90009-8CrossrefGoogle Scholar

  • [51] Setterfield T., Hodder R., Gibson H., Watkins J., The McDougall-Despina fault set, Noranda, Quebec: Evidence for fault-controlled volcanism and hydrothermal fluid flow, Exploration and Mining Geology, 4, 1995, 381–393 Google Scholar

  • [52] Bull F., and McPhie J., Facies architecture of the Early Devonian Ural Volcanics, New South Wales, Aust. J. Earth Sci., 2006, 53(6): 919–945 http://dx.doi.org/10.1080/08120090600686835CrossrefGoogle Scholar

  • [53] Gifkins C., McPhie J., Allen R., Pumiceous rhyolitic peperite in ancient submarine volcanic successions, Journal of Volcanology and Geothermal Research, 114, 2002, 181–203 http://dx.doi.org/10.1016/S0377-0273(01)00284-0CrossrefGoogle Scholar

  • [54] Winchester J., Floyd P., Geochemical discrimination of different magma series and their differentiation products using immobile elements, Chemical Geology, 20, 1977, 325–343 http://dx.doi.org/10.1016/0009-2541(77)90057-2CrossrefGoogle Scholar

  • [55] Yamagishi H., Dimroth E., A composition of Miocene and Archean rhyolite hyaloclastites: evidence for hot fluid rhyolite lava, Journal of Volcanology and Geothermal Research, 23, 1985, 337–355 http://dx.doi.org/10.1016/0377-0273(85)90040-XCrossrefGoogle Scholar

  • [56] Large R., Gemmell, Paulick H., Huston L., The alteration box plot: A simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with volcanic-hosted massive sulfide deposits, Economic geology, 96, 2001, 957–971 Google Scholar

  • [57] Gifkins C., Herrmann W., Large R., Altered volcanic rocks: A guide to description and interpretation. Centre for Ore Depisit Research (CODES), University of Tasmania, 1–275 Google Scholar

  • [58] Skilling P., White L., and McPhie J., Peperite: a review of magma-sediment mingling, Journal of Volcanology and Geothermal Research, 114(1–2), 2002, 1–17 http://dx.doi.org/10.1016/S0377-0273(01)00278-5CrossrefGoogle Scholar

  • [59] Doyle G., Clast shape and textural associations in peperite as a guide to hydromagmatic interactions: Upper Permian basaltic and basaltic andesite examples from Kiama, Australia. Aust. J. Earth Sci., 47(1), 2000, 167–177 http://dx.doi.org/10.1046/j.1440-0952.2000.00773.xCrossrefGoogle Scholar

  • [60] White L., McPhie J., and Skilling I., Peperite: a useful genetic term, Bulletin of Volcanology, 62, 2000, 65–66 http://dx.doi.org/10.1007/s004450050293CrossrefGoogle Scholar

  • [61] DeRita D., Giordano G., Cecili A., A model for submarine rhyolite dome growth:Ponza Island (central Italy), Journal of Volcanology and Geothermal Research, 107, 2001, 221–239 http://dx.doi.org/10.1016/S0377-0273(00)00295-XCrossrefGoogle Scholar

  • [62] Lexa J., Seghedi I., Németh K., Szakács A., Koneĉny V., Pécskay Z., Fülöp A., and Kovacs M., Neogene-Quaternary volcanic forms in the Carpathian-Pannonian Region: a review, Central European Journal of Geosciences, 2(3), 2010, 207–270 http://dx.doi.org/10.2478/v10085-010-0024-5CrossrefGoogle Scholar

  • [63] Németh K., Pécskay Z., Martin U., Gméling K., Molnár F., and Cronin J., Hyaloclastites, peperites and soft-sediment deformation textures of a shallow subaqueous Miocene rhyoliticdomecryptodome complex, Pálháza, Hungary. In: K. Thomson and N. Petford (Editors), Structure and Emplacement of High-Level Magmatic Systems. Geological Society, London, Special Publications. The Geological Society of London, Bath, UK, 2008, 61–83 Google Scholar

  • [64] Schumacher R., Schmincke H., Internal structure and occurrence of accretionary lapilli — a case study at Laacher See Volcano, Bulletin of Volcanology, 53, 1991, 612–634 http://dx.doi.org/10.1007/BF00493689CrossrefGoogle Scholar

  • [65] Mugge O., Untersuchungen uber die Lenneporphyre in Westfalen und den angrenzenden Gebieten, N Jb Geol Palaont Beih, 8, 1983, 535–721 Google Scholar

  • [66] Heyckendorf K., Dieunterevonischen Lenne-Vulkanite im nordstichen Rheinischen Schiefergebirge. Beitrage zur Stratigraphie, Paleogeographie, Petrographie und Geochemie. PhD-thesis Universitat Hamburg, 1985, 1–363 Google Scholar

  • [67] Bateson J. H., Accretionary lapilli in a geosynclinal environment, Geol Mag, 102, 1965, 1–7 http://dx.doi.org/10.1017/S0016756800053826CrossrefGoogle Scholar

  • [68] Fiske RS, Matsuda T., Submarine equivalents of ash flows in the Tokiwa Formation, Japan, Am J Sci 262, 1964, 76–106 http://dx.doi.org/10.2475/ajs.262.1.76CrossrefGoogle Scholar

  • [69] Vierect L. G., Taylor P. N., Parson L. M., Morton A. C., Hertogen J., Gibson I. L., and the OPD Leg 104 Scientific Party. Origin of the Paleogene Voring Plateau volcanic sequence. In: AC Morton, LM Parson (eds) Early Tertiary volcanism and the opening of the NE Atlantic, Geol Soc London Spesial Publ, 39, 1989, 69–83 Google Scholar

  • [70] Graup G., Terrestrial chondrules, glass apherules, and accretionary lapilli from the suevite, Ries Crater, Germany, Earth Planet Sci Lett, 55, 1981, 407–418 http://dx.doi.org/10.1016/0012-821X(81)90168-0CrossrefGoogle Scholar

  • [71] Cas R., Submarine Volcanism: eruption styles, products, and relevance to understanding the host rock successions to volcanic-hosted massive sulfide deposits, Economic Geology, 87, 1992, 511–547 http://dx.doi.org/10.2113/gsecongeo.87.3.511CrossrefGoogle Scholar

  • [72] Allen R., Reconstruction of the tectonic, volcanic, and sedimentary setting of strongly deformed Zn, Cu massive sulfide deposits at Benambra, Victoria, Economic geology, 87, 1992, 825–854 http://dx.doi.org/10.2113/gsecongeo.87.3.825CrossrefGoogle Scholar

  • [73] Rosa C., McPhie J., Relvas J., Type of volcanoes hosting the massive sulfide deposits of the Iberian Pyrite Belt, Journal of Volcanology and Geothermal Research, 194, 2010, 107–126 http://dx.doi.org/10.1016/j.jvolgeores.2010.05.005CrossrefGoogle Scholar

About the article

Published Online: 2014-08-06

Published in Print: 2014-09-01

Citation Information: Open Geosciences, ISSN (Online) 2391-5447, DOI: https://doi.org/10.2478/s13533-012-0182-z.

Export Citation

© 2014 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in