Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year


IMPACT FACTOR 2016 (Open Geosciences): 0.475

CiteScore 2016: 0.87

SCImago Journal Rank (SJR) 2016: 0.346
Source Normalized Impact per Paper (SNIP) 2016: 0.690

Open Access
Online
ISSN
2391-5447
See all formats and pricing
More options …

Dispersion modeling of air pollutants in the atmosphere: a review

Ádám Leelőssy / Ferenc Molnár / Ferenc Izsák / Ágnes Havasi / István Lagzi / Róbert Mészáros
Published Online: 2014-08-06 | DOI: https://doi.org/10.2478/s13533-012-0188-6

Abstract

Modeling of dispersion of air pollutants in the atmosphere is one of the most important and challenging scientific problems. There are several natural and anthropogenic events where passive or chemically active compounds are emitted into the atmosphere. The effect of these chemical species can have serious impacts on our environment and human health. Modeling the dispersion of air pollutants can predict this effect. Therefore, development of various model strategies is a key element for the governmental and scientific communities. We provide here a brief review on the mathematical modeling of the dispersion of air pollutants in the atmosphere. We discuss the advantages and drawbacks of several model tools and strategies, namely Gaussian, Lagrangian, Eulerian and CFD models. We especially focus on several recent advances in this multidisciplinary research field, like parallel computing using graphical processing units, or adaptive mesh refinement.

Keywords: air pollution modeling; Lagrangian model; Eulerian model; CFD; accidental release; parallel computing

  • [1] Flight disruptions cost airlines $1.7bn, says IATA, BBC News, http://news.bbc.co.uk/2/hi/business/8634147.stm Google Scholar

  • [2] Stull R. B., An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 1988 Google Scholar

  • [3] Kumar P., Sharan M., Parameterization of the eddy diffusivity in a dispersion model over homogenous terrain in the atmospheric boundary layer, Atmos. Res., 106, 2012, 30–43 CrossrefGoogle Scholar

  • [4] Seidel D. J., Ao. C. O., Li K., Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis, J. Geophys. Res., 115, 2010, D16113, doi: 10.1029/2009JD013680 CrossrefGoogle Scholar

  • [5] Sriram G., Krishna Mohan N., Gopalasamy V., Sensitivity study of Gaussian dispersion models, Journal of Scientific and Industrial Research, 65, 2006, 321–324 Google Scholar

  • [6] Turner D. B., The long lifetime of the dispersion methods of Pasquill in U.S. regulatory air modeling, J. Appl. Meteorol., 36, 1997, 1016–1020 CrossrefGoogle Scholar

  • [7] Luna R. E., Church H. W., A Comparison of Turbulence Intensity and Stability Ratio Measurements to Pasquill Stability Classes, J. Appl. Meteorol., 11, 1972, 663–669 CrossrefGoogle Scholar

  • [8] Galperin B., Sukoriansky S., Anderson P. S., On the critical Richardson number in stably stratified turbulence, Atmos. Sci. Lett., 8, 2007, 65–69 CrossrefGoogle Scholar

  • [9] Cimorelli A. J., Perry S. G., Venkatram A., Weil J. C., Paine R. J., Wilson R. B., Lee R. F., Peters W. D., Brode R. W., AERMOD: A dispersion model for industrial source applications. Part I: General model formulation and boundary layer characterization, J. Appl. Meteorol., 44(5), 2005, 682–693 CrossrefGoogle Scholar

  • [10] Perry S. G., CTDMPLUS: A dispersion model for sources near complex topography. Part I: Technical Formulations, J. Appl. Meteorol., 31, 1992, 633–645 CrossrefGoogle Scholar

  • [11] Foken T., 50 years of the Monin-Obukhov similarity theory. Bound-Lay. Meteorol., 2006, 119, 431–447 CrossrefGoogle Scholar

  • [12] Draxler R. R., Hess G.D., An overview of HYSPLIT_4 modelling system for trajectories, dispersion and deposition, Aust. Meteorol. Mag., 47, 1998, 295–308 Google Scholar

  • [13] Johansson C., Smedman A-S., Högström U., Critical test of the validity of Monin-Obukhov similarity during convective conditions, J. Atmos. Sci., 58, 2001, 1549–1566 CrossrefGoogle Scholar

  • [14] Stohl A., Forster C., Frank A., Seibert P., Wotawa, G., Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2005, 4739–4799 CrossrefGoogle Scholar

  • [15] Woodward J. L., Estimating the Flammable Mass of a Vapor Cloud: A CCPS Concept Book Appendix A, doi: 10.1002/9780470935361, 1999 CrossrefGoogle Scholar

  • [16] Lagzi I., Kármán D., Turányi T., Tomlin A. S., Haszpra L., Simulation of the dispersion of nuclear contamination using an adaptive Eulerian grid model, J. Environ. Radioact., 75, 2004, 59–82 CrossrefGoogle Scholar

  • [17] Mészáros R., Zsély I. G., Szinyei D., Vincze C., Lagzi I., Sensitivity analysis of an ozone deposition model, Atmos. Environ., 43, 2009, 663–672 CrossrefGoogle Scholar

  • [18] Mészáros R., Szinyei D., Vincze C., Lagzi I., Turányi T., Haszpra L., Tomlin A.S., Effect of the soil wetness state on the stomatal ozone fluxes over Hungary, Int. J. Environ. Pollut., 36, 2009, 180–194 CrossrefGoogle Scholar

  • [19] Sportisse B., A review of parameterizations for modelling dry deposition and scavenging of radionuclides, Atmos. Environ., 41, 2007, 2683–2698 CrossrefGoogle Scholar

  • [20] Baklanov A., Sørensen J. H., Parameterisation of radionuclide deposition in atmospheric long-range transport modelling, Phys. Chem. Earth B., 26, 2001, 787–799 CrossrefGoogle Scholar

  • [21] Stockie J.M., Mathematics of atmospheric dispersion modelling, SIAM Rev., 53, 2011, 349–372 CrossrefGoogle Scholar

  • [22] Namdeo A., Mitchell G., Dixon R., TEMMS: an integrated package for modelling and mapping urban traffic emissions and air quality, Environ. Model. Softw., 17, 2002, 177–188 CrossrefGoogle Scholar

  • [23] Sharan, M. and Gopalakrishnan, S. G., Bhopal gas accident: a numerical simulation of the gas dispersion event, Environ. Model. Softw., 12, 1997, 135–141 CrossrefGoogle Scholar

  • [24] Li Z., Briggs G. A., Simple PDF models for convectively driven vertical diffusion, Atmos. Environ., 22, 1988, 55–74 CrossrefGoogle Scholar

  • [25] Schulman L. L., Strimaitis D. G., Scire J. S., Development and evaluation of the PRIME plume rise and building downwash model, J. Air Waste Manage. Assoc., 50, 2000, 378–390 Google Scholar

  • [26] Abu-Allaban M., Abu-Qudais, H., Impact assessment of ambient air quality by cement industry: a case study in Jordan, Aerosol Air, Qual. Res., 11, 2011, 802–810 Google Scholar

  • [27] Lee S-S., Keener T. C., Dispersion modeling of mercury emissions from coal-fired power plants at Coshocton and Manchester, Ohio. The Ohio J. Sci, 2008, 108, 65–69 Google Scholar

  • [28] Bajwa K. S., Arya S. P., Aneja, V. P., Modeling studies of ammonia dispersion and dry deposition at some hog farms in North Carolina, J. Air Waste Manage. Assoc., 58, 2008, 1198–1207 Google Scholar

  • [29] Krzyzanowski, J., Approaching cumulative effects through air pollution modelling, Water. Air Soil Pollut., 214, 2011, 253–273 Google Scholar

  • [30] Carruthers D. J., Holroyd R. J., Hunt J. C. R., Weng W-S., Robins A. G., Thomson D. J., Smith, F. B., UKADMS, a new approach to modelling dispersion in the earth’s atmospheric boundary layer, J. Wind Eng. Ind. Aerod., 52, 1994, 139–153 CrossrefGoogle Scholar

  • [31] Carruthers D. J., Dyster S. J., McHugh C. A., Factors affecting inter-annual variability of NOx and NO2 concentrations from single point sources, Clean Air and Environmental Protection, 33, 2003, 15–20 Google Scholar

  • [32] McHugh C. A., Carruthers D. J., Edmunds H. A., ADMS-Urban: an air quality management system for traffic, domestic and industrial pollution, Int. J. Environ. Pollut., 8, 1997, 666–674 Google Scholar

  • [33] Holmes N. S., Morawska L., A review of dispersion modelling and its application to the dispersion of particles: An overview of different dispersion models available, Atmos. Environ., 40, 2006, 5902–5928 CrossrefGoogle Scholar

  • [34] Rama Krishna T. V. B. P. S., Reddy M. K., Reddy R. C., Singh R. N., Impact of an industrial complex on the ambient air quality: Case study using a dispersion model, Atmos. Environ., 39(29), 2005, 5395–5407 CrossrefGoogle Scholar

  • [35] Silverman, K. C., Tell, J. G., Sargent, E. V. and Qiu, Z., Comparison of the Industrial Source Complex and AERMOD dispersion models: Case study for human health risk assessment, J. Air Waste Manage. Assoc., 57, 2007, 1439–1446 Google Scholar

  • [36] Athanassiadou M., Baker J., Carruthers D., Collins W., Girnary S., Hassell D., Hort M., Johnson C., Johnson K., Jones R., Thomson D., Trought N., Witham C., An assessment of the impact of climate change on air quality at two UK sites, Atmos. Environ., 44, 2010, 1877–1886 CrossrefGoogle Scholar

  • [37] Leelossy Á., Mészáros R., Lagzi I., Short and long term dispersion patterns of radionuclides in the atmosphere around the Fukushima Nuclear Power Plant, J. Environ. Radioact., 102, 2011, 1117–1121 CrossrefGoogle Scholar

  • [38] Bubbico R., Mazzarotta, B., Accidental release of toxic chemicals: influence of the main input parameters on consequence calculation, J. Hazard. Mater., 151, 2008, 394–406 CrossrefGoogle Scholar

  • [39] Zhang J., Hodgson J., Erkut, E., Using GIS to assess the risks of hazardous materials transport in networks, Eur. J. Oper. Res., 121, 2000, 316–329 CrossrefGoogle Scholar

  • [40] Pudykiewicz J., Numerical simulation of the transport of radioactive cloud from the Chernobyl nuclear accident, Tellus B, 40B, 1988, 241–259 CrossrefGoogle Scholar

  • [41] Piedelievre J. P., Musson-Genon, L., Bompay, F., MEDIA — An Eulerian model of atmospheric dispersion: First validation on the Chernobyl release, J. Appl. Meteorol., 29, 1990, 1205–1220 CrossrefGoogle Scholar

  • [42] Dacre H. F., Grant A. L. M., Hogan R. J., Belcher S. E., Thomson D. J., Devenish B. J., Marenco F., Hort M. C., Haywood J. M., Ansmann A., Mattis I., Clarisse L., Evaluating the structure and magnitude of the ash plume during the initial phase of the 2010 Eyjafjallajökull eruption using lidar observations and NAME simulations, J. Geophys. Res., 116, 2011, D00U03, doi: 10.1029/2011JD015608 CrossrefGoogle Scholar

  • [43] Mészáros R., Vincze C., Lagzi I., Simulation of accidental release using a coupled transport (TREX) and numerical weather prediction (ALADIN) model, Idojárás, 114, 2010, 101–120 Google Scholar

  • [44] Srinivas C. V., Venkatesan R., Baskaran R., Rajagopal V., Venkatraman B., Regional scale atmospheric dispersion simulation of accidental releases of radionuclides from Fukushima Dai-ichi reactor, Atmos. Environ., 61, 2012, 66–84 CrossrefGoogle Scholar

  • [45] Brandt J., Mikkelsen T., Thykier-Nielsen S., Zlatev Z., Using a combination of two models in tracer simulations, Math. Comput. Model., 23, 1996, 99–115 CrossrefGoogle Scholar

  • [46] Oettl D., Uhmer U., Development and evaluation of GRAL-C dispersion model, a hybrid Eulerian-Lagrangian approach capturing NO-NO2-O3 chemistry, Atmos. Environ., 45, 2011, 839–847 CrossrefGoogle Scholar

  • [47] Pozorski J., Minier J-P., On the Lagrangian turbulent dispersion models based on the Langevin equation, Int. J. Multiphas. Flow, 24, 1998, 913–945 CrossrefGoogle Scholar

  • [48] Williams M., Yamada T., A microcomputer-based forecasting model: potential applications for emergency response plans and air quality studies, J. Air Waste Manage. Assoc., 40, 1990, 1266–1274 Google Scholar

  • [49] Mikkelsen T., Alexandersen S., Astrup P., Champion H. J., Donaldson A. I., Dunkerley F. N., Gloster J., Sorensen J. H., Thykier-Nielsen S., Investigation of airborne foot-and-mouth disease virus transmission during low-wind conditions in the early phase of the UK 2001 epidemic, Atmos. Chem. Phys., 3, 2003, 2101–2110 CrossrefGoogle Scholar

  • [50] Sorensen J. H., Sensitivity of the DERMA long-range Gaussian dispersion model to meteorological input and diffusion parameters, Atmos. Environ., 32, 1998, 4195–4206 CrossrefGoogle Scholar

  • [51] Lepicard S., Heling R., Maderich V., POSEIDON/RODOS models for radiological assessment of marine environment after accidental releases: application to coastal areas of the Baltic, Black and North Seas, J. Environ. Radioact., 72, 2004, 153–161 CrossrefGoogle Scholar

  • [52] Ghannam K., El-Fadel M., Emissions characterization and regulatory compliance at an industrial complex: An integrated MM5/CALPUFF approach, Atmos. Environ., 69, 2013, 156–169 CrossrefGoogle Scholar

  • [53] Levy J. I., Spengler J. D., Hlinka D., Sullivan D., Moon, D., Using CALPUFF to evaluate the impacts of power plant emissions in Illinois: model sensitivity and implications, Atmos. Environ., 36, 2002, 1063–1075 CrossrefGoogle Scholar

  • [54] Prueksakorn K., Kim T., Kim S., Kim H., Kim K. Y., Son W., Vongmahadlek C., Review of air dispersion modelling approaches to assess the risk of windborne spread of foot-and-mouth disease virus, J. Environ. Prot., 3, 2012, 1260–1267 CrossrefGoogle Scholar

  • [55] Zhou Y., Levy J. I., Hammitt J. K., Evans, J. S., Estimating population exposure to power plant emissions using CALPUFF: a case study in Beijing, China, Atmos. Environ., 37, 2003, 815–826 CrossrefGoogle Scholar

  • [56] Yamada T., Bunker S., and Moss M., Numerical simulations of atmospheric transport and diffusion over coastal complex terrain, J. Appl. Meteorol., 31, 1992, 565–578 CrossrefGoogle Scholar

  • [57] Wang G., Ostoja-Starzewski M., Influence of topography on the Phoenix CO2 dome: a computational study, Atmos. Sci. Lett., 5, 2004, 103–107 CrossrefGoogle Scholar

  • [58] Wu J., Lu C-H., Chang S-J., Yang Y-M, Chang B-J., Teng J-H., Three-dimensional dose evaluation system using real-time wind field information for nuclear accidents in Taiwan, Nucl. Instrum. Methods Phys. Res. A, 565, 2006, 812–820 Google Scholar

  • [59] Yamada T., Merging CFD and atmospheric modeling capabilities to simulate airflows and dispersion in urban areas, Comput. Fluid Dyn. J., 2004, 13, 329–341 Google Scholar

  • [60] Garner M. G., Hess G. D., Yang, X., An integrated modelling approach to assess the risk of wind-borne spread of foot-and-mouth disease virus from infected premises, Environ. Model. Assess., 11, 2006, 195–207 CrossrefGoogle Scholar

  • [61] Long N. Q., Truong Y., Hien P. D., Binh N. T., Sieu L. N., Giap T. V., Phan N. T., Atmospheric radionuclides from the Fukushima Dai-ichi nuclear reactor accident observed in Vietnam, J. Environ. Radioact., 111, 2012, 53–58 CrossrefGoogle Scholar

  • [62] McGowan H., Clark A., Identification of dust transport pathways from Lake Eyre, Australia using HYSPLIT, Atmos. Environ., 42, 2008, 6915–6925 CrossrefGoogle Scholar

  • [63] Shan W., Yin Y., Lu H., Liang S., A meteorological analysis of ozone episodes using HYSPLIT model and surface data. Atmos. Res., 2009, 93, 767–776 CrossrefGoogle Scholar

  • [64] Challa V. S., Indrcanti J., Baham J. M., Patrick C., Rabarison M. K., Young J. H., Hughes R., Swanier S. J., Hardy M. G., Yerramilli A., Sensitivity of atmospheric dispersion simulations by HYSPLIT to the meteorological predictions from a meso-scale model, Environ. Fluid. Mech., 8, 2008, 367–387 CrossrefGoogle Scholar

  • [65] Wain A. G., Lee S., Mills G. A., Hess G. D., Cope M. E., Tindale N., Meteorological overview and verification of HYSPLIT and AAQFS dust forecasts for the duststorm of 22–24 October 2002, Aust. Meteorol. Mag., 55, 2006, 35–46 Google Scholar

  • [66] Stohl A., Hittenberger M., Wotawa G., Validation of the Lagrangian particle dispersion model FLEXPART against large-scale tracer experiment data, Atmos. Environ., 32, 1998, 4245–4264 CrossrefGoogle Scholar

  • [67] Ryall D. B., Maryon R. H., Validation of the UK Met Office’s NAME model against the ETEX dataset, Atmos. Environ., 32, 1998, 4256–4276 Google Scholar

  • [68] de Foy B., Burton S. P., Ferrare R.A., Hostetler C. A., Hair J. W., Wiedinmyer C., Molina, L. T., Aerosol plume transport and transformation in high spectral resolution lidar measurements and WRF-FLEXPART simulations during the MILAGRO Field Campaign, Atmos. Chem. Phys., 11, 2011, 3543–3563 CrossrefGoogle Scholar

  • [69] Warneke C., Froyd K. D., Brioude J., Bahreini R., Brock C. A., Cozic J., de Gouw J. A., Fahey D. W., Ferrare R., Holloway J. S., Middlebrook A. M., Miller L., Montzka S., Schwarz J. P., Sodemann H., Spackman J. R., Stohl, A., An important contribution to springtime Arctic aerosol from biomass burning in Russia, Geophys. Res. Lett., 37, 2010, L01801, doi: 10.1029/2009GL041816 CrossrefGoogle Scholar

  • [70] Stohl A., Seibert P., Wotawa G., Arnold D., Burkhart J. F., Eckhardt S., Tapia C., Vargas A., Yasunari T. J., Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of source term, atmospheric dispersion, and deposition, Atmos. Chem. Phys., 11, 2011, 28319–28394 CrossrefGoogle Scholar

  • [71] Koracin D., Vellore R., Lowenthal D. H., Watson J. G., Koracin J., McCord T., DuBois D. W., Chen L-W. A., Kumar N., Knipping E. M., Wheeler N. J. M., Craig K., Reid S., Regional source identification using Lagrangian stochastic particle dispersion and HYSPLIT backward-trajectory models, J. Air Waste Manage. Assoc., 61, 2011, 660–672 Google Scholar

  • [72] Povinec P.P., Sykora I., Gera M., Holy K., Brestaková L., Kovácik A., Fukushima-derived radionuclides in ground-level air of Central Europe: a comparison with simulated forward and backward trajectories, J. Radioanal. Nucl. Ch., 295, 2013, 1171–1176 CrossrefGoogle Scholar

  • [73] Bey I., Jacob D., Yantosca M., Logan J., Field B., Fiore A., Li Q, Liu H, Mickley L, Schultz M., Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys.Res., 106, 2001, 23073–23096 CrossrefGoogle Scholar

  • [74] Grell G. A., Peckham S. E., McKeen S., Schmitz R., Frost G., Skamarock W. C., Eder B., Fully coupled “online” chemistry within the WRF model, Atmos. Environ., 39, 2005, 6957–6975 CrossrefGoogle Scholar

  • [75] Wang K., Zhang Y., Jang C., Phillips S., Wang B., Modeling intercontinental air pollution transport over the trans-Pacific Region in 2001 using Community Multiscale Air Quality modeling system, J. Geophys. Res., 114, 2009, D04307 CrossrefGoogle Scholar

  • [76] Garcia-Menendez F., Odman M. T., Adaptive grid use in air quality modeling, Atmosphere, 2, 2011, 484–509 Google Scholar

  • [77] Ghorai S., Tomlin A. S., Berzins M., Resolution of pollutant concentrations in the boundary layer using a fully 3D adaptive gridding technique, Atmos. Environ., 34, 2000, 2851–2863 Google Scholar

  • [78] Lagzi I., Tomlin A. S., Turányi T., Haszpra L., Mészáros R., Berzins M., The simulation of photochemical smog episodes in Hungary and Central Europe using adaptive gridding models, Lect. Notes Comp. Sci., 2074, 2001, 67–77 CrossrefGoogle Scholar

  • [79] Lagzi I., Tomlin S. A., Turányi T., Haszpra, L., Modelling photochemical air pollutant formation in Hungary using an adaptive grid technique, Int. J. Environ. Pollut., 36, 2009, 44–58 CrossrefGoogle Scholar

  • [80] Tomlin A. S., Ghorai S., Hart G., Berzins M., 3-D Multi-scale air pollution modelling using adaptive unstructured meshes, Environ. Model. Softw., 15, 2000, 681–692 CrossrefGoogle Scholar

  • [81] Zegeling P. A., R-refinement with finite elements or finite differences for evolutionary PDE models, Appl. Numer. Math., 26, 1998, 97–104 CrossrefGoogle Scholar

  • [82] Zegeling P. A., Lagzi I., Izsak F., Transition of Liesegang precipitation systems: simulations with an adaptive grid PDE method, Commun. Comput. Phys., 10, 2011, 867–881 Google Scholar

  • [83] Ascher U., Numerical methods for evolutionary differential equations. Computational science and engineering. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2008 Google Scholar

  • [84] Grossmann C., Roos H., Stynes M., Numerical Treatment of Partial Differential Equations. Universitext, Springer, Berlin, 2007 Google Scholar

  • [85] Thomas J. W., Numerical partial differential equations: finite difference methods, volume 22 of Texts in Applied Mathematics. Springer-Verlag, New York, 1995 Google Scholar

  • [86] Versteeg H., Malalasekera W., An introduction to computational fluid dynamics: the finite volume method. Pearson Education Australia, 2007 Google Scholar

  • [87] Huebner K., The Finite Element Method for Engineers. A Wiley-Interscience publication. Wiley, New York, 2001 Google Scholar

  • [88] Nair R. D., Thomas S. J., Loft R. D., A discontinuous Galerkin transport scheme on the cubed sphere. Mon. Weather Rev., 2005, 133, 814–828 Google Scholar

  • [89] Faragó I., Havasi Á., Operator splitting and their applications, Mathematics Research Development Series, Nova Science Publishers, Inc., New York, 2009 Google Scholar

  • [90] Lanser D., Verwer J. G., Analysis of operator splitting for advection-diffusion-reaction problems in air pollution modelling, J. Compute. Appl. Math., 111, 1999, 201–216 CrossrefGoogle Scholar

  • [91] Marchuk G. I., Methods of Splitting. Nauka, Moscow, 1988 (in Russian) Google Scholar

  • [92] Yanenko N. N., On convergence of the splitting method for heat equation with variable coefficients. Journal of Computational Mathematics and Mathematical Physics 2, 1962 (in Russian) Google Scholar

  • [93] Zlatev Z., Computer Treatment of Large Air Pollution Models, Kluwer Academic Publisher, 1995 Google Scholar

  • [94] Dimov I., Faragó I., Havasi Á., Zlatev Z., Operator splitting and commutativity analysis in the Danish Eulerian Model, Math. Comput. Simul, 67, 2003, 217–233 Google Scholar

  • [95] Dimov I., Faragó I., Havasi Á., Zlatev, Z., Different splitting techniques with application to air pollution models, Int. J. Environ. Pollut., 32(2), 2008, 174–199 CrossrefGoogle Scholar

  • [96] Strang G., On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5, 1968, 506–517 CrossrefGoogle Scholar

  • [97] Csomós P., Havasi Á., Faragó I., Weighted sequential splittings and their analysis, Comp. Math. Appl., 50, 2005, 1017–1031 CrossrefGoogle Scholar

  • [98] Strang G., Accurate partial difference methods I: Linear Cauchy problems, Arch. Ration. Mech. An., 12, 1963, 392–402 CrossrefGoogle Scholar

  • [99] Foster I., Kesselman C., Tuecke S., The anatomy of the grid, Intl. J. High Perf. Comput. Appl, 15, 2001, 200–222 Google Scholar

  • [100] Jacob B., Brown M., Fukui K., Trivedi N., Introduction to Grid computing. IBM Redbooks, Vervante, Springville, Utah, 2005 Google Scholar

  • [101] Sterling T. L, Bell G., Beowulf Cluster Computing With Linux, MIT Press, 2002 Google Scholar

  • [102] Adiga N. R., Blumrich M. A., Chen D., Coteus P., Gara A., Giampapa M. E., Heidelberger P., Singh S., Steinmacher-Burow B. D., Takken T., Tsao M., Vranas P., Blue Gene/L torus interconnection network, IBM J. Res. Dev., 49, 2005, 265–276 Google Scholar

  • [103] Hempel R., The MPI standard for message passing. Proc. Intl. Conf. and Exhibit. On High Perf. Comp and Networking II, 1994, 247–252 Google Scholar

  • [104] Sunderam V. S., PVM: A framework for parallel distributed computing, Concurrency-Pract. Ex., 2, 1990, 315–339 CrossrefGoogle Scholar

  • [105] Sun X.-H., Chen Y., Reevaluating Amdahl’s law in the multicore era, J. Parallel Distrib. Comput., 70, 2010, 183–188 CrossrefGoogle Scholar

  • [106] General Purpose Computation on Graphics Hardware, http://gpgpu.org/ Google Scholar

  • [107] Mészáros R., Molnár F., Izsák F., Kovács T., Dombovári P., Steierlein Á., Nagy R., Lagzi I., Environmental modeling using graphical processing unit with CUDA, Idojárás, 116, 2012, 237–251 Google Scholar

  • [108] Molnár F., Szakály T., Mészáros R., Lagzi I., Air pollution modelling using a Graphics Processing Unit with CUDA, Comput. Phys. Commun., 181, 2010, 105–112 CrossrefGoogle Scholar

  • [109] Pardyjak E. R., Singh B., Norgren A., Willemsen P., Using video gaming technology to achieve low-cost speed up of emergency response urban dispersion simulations, in: Seventh Symposium on the Urban Environment, University of Utah, Salt Lake City and University of Minnesota, Duluth, 2007 Google Scholar

  • [110] Senocak I., Thibault J., Caylor M., Rapid-response urban CFD simulations using a GPU computing paradigm on desktop supercomputers, in: Eighth Symposium on the Urban Environment, Phoenix, Arizona, 2009, J19.2 Google Scholar

  • [111] Simek V., Dvorak R., Zboril F., Kunovsky J., Towards accelerated computation of atmospheric equations using CUDA, in: Proceedings of the UK Sim 2009. 11th International Conference on Computer Modelling and Simulation, 2009, 449–454 Google Scholar

  • [112] Januszewski M., Kostur M., Accelerating numerical solution of stochastic differential equations with CUDA, Comput. Phys. Commun., 181, 2010, 183–188 CrossrefGoogle Scholar

  • [113] Michéa D., Komatitsch D., Accelerating a threedimensional finite-difference wave propagation code using GPU graphics cards, Geophys. J. Int., 182, 2010, 389–402 Google Scholar

  • [114] Micikevicius P., 3D Finite difference computation on GPUs using CUDA. Proc. 2nd Workshop General Purpose Processing on Graphics Processing Units, ACM, 2009, 79–84 Google Scholar

  • [115] Molnár F., Izsák F., Mészáros R., Lagzi I., Simulation of reaction-diffusion processes in three dimensions using CUDA, Chemometr. Intell. Lab., 108, 2011, 76–85 CrossrefGoogle Scholar

  • [116] Sanderson A. R., Meyer M. D., Kirby R. M., Johnson C. R., A framework for exploring numerical solutions of advection-reaction-diffusion equations using a GPU-based approach, Comput. Vis. Sci., 12, 2009, 155–170 CrossrefGoogle Scholar

  • [117] Che S., Boyer M., Meng J., Tarjan D., Sheaffer J. W., Skadron K., A performance study of general purpose applications on graphics processors using CUDA. J. Parallel Distr. Com., 2008, 68, 1370–1380 CrossrefGoogle Scholar

  • [118] Garland M., Le Grand S., Nickolls J., Anderson J., Hardwick J., Morton S., Phillips E., Zhang Y., Volkov, V., Parallel computing experiences with CUDA, Micro IEEE, 28, 2008, 13–27 Google Scholar

  • [119] Krishnaprasad S., Uses and abuses of Amdahl’s law, J. Comp. Sci. Coll., 17, 2001, 288–293 Google Scholar

  • [120] Gustafson J., Re-evaluating Amdahl’s law, Communications of the ACM, 31, 1988, 532–533 Google Scholar

  • [121] El-Nashar A. I., To Parallelize or not to parallelize, speed up issue, Int. J Dist. Parallel Syst., 2, 2011, 2 Google Scholar

  • [122] Ostromsky T., Zlatev Z., Parallel and GRID implementation of a large scale air pollution model. Numerical Methods and Applications Lect., Notes Comput. Sc., 4310, 2007, 475–482 Google Scholar

  • [123] Todorova A., Syrakov D., Gadjhev G., Georgiev G., Ganev K.G., Prodanova M., Miloshev N., Spiridonov V., Bogatchev A., Slavov K., Grid computing for atmospheric composition studies in Bulgaria, Earth Sci. Inf., 3, 2010, 259–282 CrossrefGoogle Scholar

  • [124] Roberti D. R., Souto R, P., de Campos Velho H. F., Degrazia G. A., Anfossi D., Parallel implementation of a Lagrangian stochastic model for pollutant dispersion, Int. J. Parallel Program., 33, 2005, 485–498 Google Scholar

  • [125] Srinivas C. V., Venkatesan R., Muralidharan N. V., Das S., Dass H., Kumar P.E., Operational mesoscale atmospheric dispersion prediction using a parallel computing cluster, J. Earth Syst. Sci., 115, 2006, 315–332 CrossrefGoogle Scholar

  • [126] Alexandrov V. N., Owczarz W., Thomson P. G., Zlatev Z., Parallel runs of a large air pollution model on a grid of Sun computers, Math. Comput. Simul., 65, 2004, 557–577 CrossrefGoogle Scholar

  • [127] Georgiev K., An algorithm for parallel implementations of an Eulerian smog model. Numerical Methods and Applications Lect., Notes Comput. Sc., 2542, 2003, 463–470 Google Scholar

  • [128] Georgiev K., Ostromsky T., Zahari Z., New parallel implementation of an air pollution computer model — performance study on an IBM blue gene/p computer. Large-Scale Scientific Computing Lect. Notes Comput. Sc., 7116, 2012, 283–290 CrossrefGoogle Scholar

  • [129] Ostromsky T., Zlatev Z., Parallel implementation of a large-scale 3-D air pollution model. Large-Scale Scientific Computing Lect, Notes Comput. Sc., 2179, 2001, 309–316 Google Scholar

  • [130] Philippe C., Coppalle A., Atmospheric dispersion and chemical pollutant transformation simulated with parallel calculations using two PC clusters, Int. J. Environ. Pollut., 22, 2004, 133–143 CrossrefGoogle Scholar

  • [131] Chen Q., Prediction of room air motion by Reynoldsstress models. Build. Environ., 1996, 31(3), 233–244 CrossrefGoogle Scholar

  • [132] Rossi R., Iaccarino G., Numerical simulation of scalar dispersion downstream of a square obstacle using gradient-transport type models, Atmos. Environ., 43, 2009, 2518–2531 CrossrefGoogle Scholar

  • [133] Baklanov A., Application of CFD methods for modelling in air pollution problems: possibilities and gaps, Environ. Monit. Assess., 65, 2000, 181–189 CrossrefGoogle Scholar

  • [134] Cheng W. C., Liu, C-H., Large-eddy simulation of flow and pollutant transports in and above twodimensional idealized street canyons, Bound-Lay. Meteorol., 139, 2011, 411–437 CrossrefGoogle Scholar

  • [135] Li X-X., Liu C-H., Leung D. Y. C., Large-eddy simulation of flow and pollutant dispersion in high-aspectratio urban street canyons with wall model, Bound-Lay. Meteorol., 129, 2008, 249–268 CrossrefGoogle Scholar

  • [136] Balczó M., Balogh M., Goricsán I., Nagel T., Suda J. M., Lajos T., Air quality around motorway tunnels in complex terrain: computational fluid dynamics modeling and comparison to wind tunnel data, Idojárás, 115, 2011, 179–204 Google Scholar

  • [137] Di Sabatino S., Buccolieri R., Pulvirenti B., Britter R. E., Flow and pollutant dispersion in street canyons using FLUENT and ADMS-Urban. Environ. Model. Assess., 13, 2008, 369–381 CrossrefGoogle Scholar

  • [138] Milliez M., Carissimo B., Numerical simulations of pollutant dispersion in an idealized urban area, for different meteorological conditions, Bound-Lay. Meteorol., 122(2), 2007, 321–342 CrossrefGoogle Scholar

  • [139] Tominaga Y., Mochida A., Yoshie R., Kataoka H., Nozu T., Yoshikawa M., Shirasawa, T., AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings, J. Wind Eng. Ind. Aerod., 96, 2008, 1749–1761 CrossrefGoogle Scholar

  • [140] Tewari M., Kusaka H., Chen F., Coirier W.J., Kim S., Wyszogrodzki A. A., Warner, T. T., Impact of coupling a microscale computational fluid dynamics model with a mesoscale model on urban scale contaminant transport and dispersion, Atmos. Res., 96, 2010, 656–664 CrossrefGoogle Scholar

  • [141] Van Dop, H., Addis, R., Fraser, G., Girardi, F., Graziani, G., Inoue, Y., Kelly, N., Klug, W., Kulmala, A., Nodop, K., Pretel, J., ETEX: A Europian Tracer Experiment; Observations, dispersion modelling and emergency response, Atmos. Environ. 32, 1998, 4089–4094 Google Scholar

  • [142] Zhang, Y: Online-coupled meteorology and chemistry models: history, current status, and outlook, Atmos. Chem. Phys., 8, 2008, 2895–2932 CrossrefGoogle Scholar

  • [143] Molteni, F.; Buizza, R.; Palmer, T. N.; Petroliagis, T., The ECMWF Ensemble Prediction System: Methodology and validation, Q. J. Roy, Meteor. Soc., 122, 1996, 73–119 CrossrefGoogle Scholar

About the article

Published Online: 2014-08-06

Published in Print: 2014-09-01


Citation Information: Open Geosciences, ISSN (Online) 2391-5447, DOI: https://doi.org/10.2478/s13533-012-0188-6.

Export Citation

© 2014 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Ibukun Oluwoye, Bogdan Z. Dlugogorski, Jeff Gore, Hans C. Oskierski, and Mohammednoor Altarawneh
Atmospheric Environment, 2017, Volume 167, Page 81
[2]
Javier Monroy, Victor Hernandez-Bennets, Han Fan, Achim Lilienthal, and Javier Gonzalez-Jimenez
Sensors, 2017, Volume 17, Number 7, Page 1479
[3]
I A Musliman and L Yohnny
Journal of Physics: Conference Series, 2017, Volume 852, Page 012026

Comments (0)

Please log in or register to comment.
Log in