Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year


IMPACT FACTOR 2016 (Open Geosciences): 0.475

CiteScore 2016: 0.87

SCImago Journal Rank (SJR) 2016: 0.346
Source Normalized Impact per Paper (SNIP) 2016: 0.690

Open Access
Online
ISSN
2391-5447
See all formats and pricing
More options …

Impact of climate change on the groundwater run-off in south-west Poland

Tomasz Olichwer
  • Corresponding author
  • University of Wroclaw, Institute of Geological Sciences, pl. M. Borna 9, 50-204 Wroclaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Robert Tarka
Published Online: 2014-10-28 | DOI: https://doi.org/10.1515/geo-2015-0001

Abstract

The article discusses the variability of total runoff and groundwater run-off affected by global and local climate changes using the example of 17 selected river basins located in south-west Poland. Based on the data collected from 1966 to 2005, the average annual values of the total and groundwater run-off, aswell as the seven-day annual minimum flows, were estimated, which provided useful information about droughts. The calculated parameters were compared with precipitation, air temperature, aridity index (the ratio of the precipitation and potential evapotranspiration), and the NAO (North Atlantic Oscillation) and AMO (Atlantic Multidecadal Oscillation) indices. There were no significant changes in the total run-off in the research area; however, there was a reduction in the groundwater run-off, which indicates change in groundwater recharge. The strongest relationship of total run-off, groundwater run-off and seven-day annual flow minimum was obtained from the NAO index,which confirms that the run-off from the study area is dependent on global factors. This is important for the estimation of changes in the runoff from the study area in response to the climate scenarios for the years 2011-2030, which indicate a fairly significant increase in air temperature and slight differences in precipitation. Based on extensive investigations, a reduction in the groundwater run-off in favour of increased surface run-off should be expected in the research area.

Keywords : groundwater resources; climate change; longterm variability; south-west Poland

References

  • [1] Bae D-Y., JungW. II., Chang H., Long-term trend of precipitation and runoff in Korean river basins. Hydrological Process, 2008, 22(14), 2644-2656, doi: 10.1002/hyp.6861CrossrefGoogle Scholar

  • [2] Błażejczyk K., Climate and bioclimate of Poland. In: Degórski M (Ed.), Natural and human environment of Poland. A geographical overview. Polish Academy of Sciences, Inst. of Geography and Spatial Organization Polish Geographical Society, Warsaw, 2006, 31-48Google Scholar

  • [3] Bocheńska T., Marszałek H., Poprawski L., Groundwater resources of the middle and upper Odra River basin, southwestern Poland. Hydrogeology Journal, 1998, 6, 315-322Google Scholar

  • [4] Bocheńska T., Dowgiałło J., Kleczkowski A.S., Krajewski S.,Macioszczyk A.,Macioszczyk T.,Wałecka D., Rogoż M., Różkowski A., Sadurski A., Szczepański A., Witczak S., Słownik hydrogeologiczny. Państwowy Instytut Geologiczny, Warszawa, 2002Google Scholar

  • [5] Bolle H.J., Menenti M., Rasool I. (Ed.) Regional Climate Studies. Assessment of Climate Change for the Baltic Sea Basin. Springer-Verlag, Berlin,Heidelberg, 2008.Google Scholar

  • [6] Boryczka J., Stopa-Boryczka M., Cykliczne wahania temperatury i opadów w Polsce w XIX-XXI wieku [Cyclic temperature and precipitation fluctuations in Poland in 19th-21st century], Acta Agrophysica, 2004, 3(1), 21-33 (in Polish with English summary)Google Scholar

  • [7] Callander B.A., Global climatic change - the latest scientific understanding. GeoJournal, 1997, 42.1, 55-63Google Scholar

  • [8] Chudzik B., Tokarczyk T., Bogusz A., DąbrowskI M., Garncarz B., Hołda I., Odpływ podziemny w zlewniach o różnym zagospodarowaniu [Groundwater runoff from basins of different management]. In Mońka B (Ed.),Zarządzanie zasobami wodnymiwdorzeczu Odry.Wydawnictwo PZITS, 2008, 199-213 (in Polish with English summary)Google Scholar

  • [9] Gedney N., Cox P.M., Betts R.A., Boucher O., Huntingford C., Stott, P.A., Detection of a direct carbon dioxide effect in continental river runoff records. Nature, 2006, 439, 835-838.Google Scholar

  • [10] Fetter C.W., Applied Hydrogeology. Third edition. Prentice-Hall Inc. New Jersey, 1994Google Scholar

  • [11] Fu G., Charles S.P., Viney N.R., Chen S., Wu J.Q., Impacts of climate variability on stream-flow in the Yellow River. Hydrological Process, 2007, 21(25), 3431-3439, doi: 10.1002/hyp.6574CrossrefGoogle Scholar

  • [12] Gan T.Y., Hydroclimatic trends and possible climatic warming in the Canadian Prairies. Water Resources Research, 1998, 34(11), 3009-3015, DOI: 10.1029/98WR01265CrossrefGoogle Scholar

  • [13] Hisdal H., Holmqvist E.E., Hyvarinen V., Jonsson P., Kuusisto E., Larsen S.E., Lindström G., Ovesen N.B., Roald A.L., Long Time Series - A Review of Nordic Studies. Climate,Water and Energy Projects, Reykjavik, Report 2, 2003Google Scholar

  • [14] Hurrell, J. W., Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science, 1995, 269(4), 676-679, doi: 10.1126/science.269.5224.676CrossrefGoogle Scholar

  • [15] IPCC (Intergovernmental Panel on Climate Change), Climate change: The Supplementary report to the IPCC Scientific Assessment. Houghton J. T., Callander B. A., Varney S. K., (eds.). Cambridge University Press, Cambridge, UK, 1992Google Scholar

  • [16] IPCC (Intergovernmental Panel on Climate Change), Climate change: The Science of Climate Change. The contribution of Working Group I to the IPCC Second Assessment Report. Houghton J. T., Meira Filho L. G., Callander B. A., Harris N., Kattenberg A., Maskell K. (eds.). Cambridge University Press, Cambridge, UK, 1996Google Scholar

  • [17] IPCC (Intergovernmental Panel on Climate Change), Emissions Scenarios: A Special Report of Working Group II of the Intergovernmental Panel on Climate Change, In: Nakicenovic N., Swart R. (eds.). Cambridge University Press, Cambridge, UK, 2000Google Scholar

  • [18] IPCC (Intergovernmental Panel on Climate Change), Climate Change: The Scientific Basis, Contributions of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change, In: Houghton J. T., Ding Y., Griggs D. J., Noguer M., van der Linden P. J., Dai X.,Maskell K., Johnson C.A. (eds.). Cambridge University Press, Cambridge, UK, 2001 Google Scholar

  • [19] IPCC (Intergovernmental Panel on Climate Change), Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, In: Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K. B., Tignor M., Miller H. L. (eds.). Cambridge University Press, Cambridge, UK and New York, NY, USA, 2007Google Scholar

  • [20] IPCC (Intergovernmental Panel on Climate Change), Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, In: Stocker T.F., Qin D., Plattner G.K„ Tignor M„ Allen S.K., Boschung J., Nauels A., Xia Y., Bex V. Midgley P.M. (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013Google Scholar

  • [21] Kjellström E., Lind P., Changes in the water budget in the Baltic Sea drainage basin in future warmer climates as simulated by the regional climate model RCA 3. Boreal Environment Research, 2009, 14, 114-124Google Scholar

  • [22] Korhonen J., Kursisto E., Long-term changes in the discharge regime in Finland. Hydrology Research, 2010, 41(3-4), 253-268, doi:10.2166/nh.2010.112Web of ScienceCrossrefGoogle Scholar

  • [23] Lindström G., Bergström U. Runoff trends in Sweden 1807-2002. Hydrological Sciences Journal, 2004, 49(1), 69-82, doi: 10.1623/hysj.49.1.69.54000CrossrefGoogle Scholar

  • [24] Luterbacher J., Xoplaki E., Küttel M, Zorita E., Gonzáles-Rouco F.J., Jones P.D., Stössel M., Rutishauser T., Wanner H., Wibig J. Przybylak R., Climate change in Poland in the past centuries and its relationship to European climate: evidence from reconstructions and coupled climate models. In: Przybylak R., Majorowicz J., Brázdil R., Kejna M., (Ed.), The Polish Climate in the European Context: An Historical Overview. Springer Verlag, Berlin, Heidelberg, New York, 2010, 3-39Google Scholar

  • [25] Marsz A., Oscylacja Północnoatlantycka a reźim termiczny zim na obszarze północno-zachodniej Polski i na polskim wybrzeżu Bałtyku [The North Atlantic Oscillation and the thermal regime in the area of north-west Poland and the Polish coast of the Baltic Sea]. Przegląd Geograficzny, 1999, 71 (3), 225-245 (in Polish with English summary).Google Scholar

  • [26] Milly P.C.D., Dunne K.A., Vecchia A.V., Global pattern of trends in streamflow and water availability in a changing climate. Nature, 2005, 438, 347-350.Google Scholar

  • [27] Oki T., Kanael S., Global hydrological cycles and world water resources. Journal Science, 2006, 313, 5790, 1068-1072.Google Scholar

  • [28] Olichwer T., Groundwater renewable resources of Kłodzko region. In: Marszałek H., Chudy K. (Ed.), Selected hydrogeologic problems of the Bohemian Massif and of other hard rock terrains in Europe. Acta Universitatis Wratislaviensis 2007, 3041, 247-258Google Scholar

  • [29] Pekarova P., Miklanek P., Pekar J., Spatial and temporal runoff oscillation analysis of the main rivers of the world during the 18th-20th centuries. Journal of Hydrology, 2003, 274 (1-4), 62-79, DOI: http://dx.doi.org/10.1016/S0022-1694(02) 00397-9CrossrefGoogle Scholar

  • [30] Reihan A., Koltsova T., Kriauciuniene J., Lizuma L., Meilutyte- Barauskiene D., Changes in water discharges of the Baltic states rivers in the 20th century and its relation to climate change. Nordic Hydrology 2007, 38: 4/5, 401-412.CrossrefWeb of ScienceGoogle Scholar

  • [31] Sadurski A., Hydrogeological and legal problems of transboundary aquifers in Poland. In: Nałęcz T. (Ed.), Groundwater management in the East of the European Union: Transboundary strategies for sutainable use and protection of resources. Springer, Netherlands, 2011, 21-32.Google Scholar

  • [32] Sloto, R.A., Crouse, M.Y., HYSEP: A computer program for streamflow hydrograph separation and analysis: U.S. Geological Survey Water-Resources Investigations Report 96-4040, 1996Google Scholar

  • [33] Staśko, S., Tarka, R., Zasilanie i drenaż wód podziemnych w obszarach górskich na podstawie badań wMasywie Śnieżnika [Groundwater recharge and drainage processes in mountainous terrains based on research in the Snieznik Massif] Acta Universitas Wratislaviensis, 2002, 2528, 64 pp (in Polish with English summary)Google Scholar

  • [34] 34] Staśko S., Olichwer T., Tarka R., Susza hydrogeologiczna w Sudetach [Hydrogeological drought in SudetyMTS]. In: Mońka B. (Ed.), Zarządzanie zasobami wodnymi w dorzeczu Odry. Wydawnictwo PZITS, 2008, 37-46 (in Polish with English summary)Google Scholar

  • [35] Tarka R., Zasilanie wód podziemnych w górskich masywach krystalicznych na przykładzie masywu Śnieżnika w Sudetach [Groundwater recharge in mountain crystalline massifs on the example the Śnieżnik Massif in the Sudety Mts.]. Acta Universitas Wratislaviensis, 1997, 1964, p.66, (in Polish with English summary)Google Scholar

  • [36] Tao F., Yokozawa M., Hayashi Y., Lin E., Future climate change, the agricultural water cycle, and agricultural production in China. Agriculture, Ecosystems and Environment, 2003, 95, 203-215Google Scholar

  • [37] Vörösmarty C.J., Green P., Salisbury J., Lammers R.B., Global water resources: vulnerability from climate change and population growth. Journal Science, 2000, 289, 5477, 284-288Google Scholar

  • [38] Walter M.T., Wilks D.S., Parlange J.-Y., Schneider R.L., Increasing evapotranspiration from the conterminous United States. Journal of Hydrometeorology, 2004, 5, 405-408Google Scholar

  • [39] Wibig J., Brzóska B., Curyło A., Jaczewski A., Konca-Kędzierska K., Liszewska M., Pianko-Kluczyńska K., Dynamiczne scenariusze zmian klimatu Polski na lata 2011-2030. In: Wibig J., Jakusik E. (Ed.), Warunki klimatyczne i oceanograficzne w Polsce i na Bałtyku Południowym. IMGW-PIB, Warszawa, 2012, 93-124Google Scholar

  • [40] Wrzesiński D., Changes of the hydrological regime of rivers of northern and central Europe in various circulation periods of the North Atlantic Oscillation. Quaestiones Geographicae, 2005, 24, 97-109Google Scholar

  • [41] Wrzesiński D., Impact of the North Atlantic Oscillation on features of the hydrological regimes in Europe. Proceedings The Third International Conference on Climate and Water. Finnish Environment Institute SYKE, Helsinki, 2007, 538-543 Google Scholar

About the article

Received: 2014-04-08

Accepted: 2014-08-31

Published Online: 2014-10-28


Citation Information: Open Geosciences, ISSN (Online) 2391-5447, DOI: https://doi.org/10.1515/geo-2015-0001.

Export Citation

© 2015 T. Olichwer, R. Tarka. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Chul-Hee Lim, Yuyoung Choi, Moonil Kim, Seong Jeon, and Woo-Kyun Lee
Sustainability, 2017, Volume 9, Number 8, Page 1354

Comments (0)

Please log in or register to comment.
Log in